TY - JOUR
T1 - Honey Bees in the Tropics Show Winter Bee-Like Longevity in Response to Seasonal Dearth and Brood Reduction
AU - Feliciano-Cardona, Stephanie
AU - Döke, Mehmet Ali
AU - Aleman, Janpierre
AU - Agosto-Rivera, Jose Luis
AU - Grozinger, Christina M.
AU - Giray, Tugrul
N1 - Funding Information:
We acknowledge funding from Puerto Rico Science, Technology and Research Trust (CRG 2020-0139), NSF (DEB 1940621, HRD 1736019), USDA-APHIS (APP-8159 and APP-11783) to TG and NSF (IIS 1633184) to JLA-R.
Publisher Copyright:
© Copyright © 2020 Feliciano-Cardona, Döke, Aleman, Agosto-Rivera, Grozinger and Giray.
PY - 2020/10/16
Y1 - 2020/10/16
N2 - Upon their first introduction to Americas in 1956, African honey bees (Apis mellifera scutellata) hybridized with the previously introduced and already established European honey bees (EHBs). The resulting Africanized honey bees (AHBs) have spread through the continental tropics of the Western Hemisphere. The expansion of AHB has been constrained in temperate climates generally thought to be because of a lack of key adaptations required for successful overwintering. A drastic increase in longevity during broodless periods is crucial to colony survival. In the temperate regions, honey bee colonies become broodless in winter. While tropical regions do not experience winters as temperate zones do, seasonal changes in the abundance of floral resources cause variation in brood levels throughout the year. Here we use an island population of AHB in Puerto Rico (gAHB) to test the capacity of tropical-adapted honey bees to alter their longevity in different seasons, as well as under brood manipulation. We found that worker longevity in the gAHB colonies increases in the wet season (maximum longevity ca. 88 days vs. 56 days) in response to dearth of floral resources. A more pronounced increase in longevity was observed in response to manipulative reduction of the amount of open brood (maximum longevity 154 days). In addition, long lived gAHB demonstrated the signature winter bee-like hypopharyngeal gland size (average acini diameter 100.8 ± 6.2 μm at 65 and 70 days of age, N = 26), intermediate between forager (88.7 ± 5.9 μm, N = 24) and nurse (129.5 ± 8.1 μm, N = 24) gland size. We showed that gAHBs do not lack the adaptation to alter their longevity seasonally, though the magnitude of changes is less intense than those observed in EHBs during temperate winters. This suggests that increased longevity in response to limited capacity to rear brood is a shared character of Africanized and European honey bees.
AB - Upon their first introduction to Americas in 1956, African honey bees (Apis mellifera scutellata) hybridized with the previously introduced and already established European honey bees (EHBs). The resulting Africanized honey bees (AHBs) have spread through the continental tropics of the Western Hemisphere. The expansion of AHB has been constrained in temperate climates generally thought to be because of a lack of key adaptations required for successful overwintering. A drastic increase in longevity during broodless periods is crucial to colony survival. In the temperate regions, honey bee colonies become broodless in winter. While tropical regions do not experience winters as temperate zones do, seasonal changes in the abundance of floral resources cause variation in brood levels throughout the year. Here we use an island population of AHB in Puerto Rico (gAHB) to test the capacity of tropical-adapted honey bees to alter their longevity in different seasons, as well as under brood manipulation. We found that worker longevity in the gAHB colonies increases in the wet season (maximum longevity ca. 88 days vs. 56 days) in response to dearth of floral resources. A more pronounced increase in longevity was observed in response to manipulative reduction of the amount of open brood (maximum longevity 154 days). In addition, long lived gAHB demonstrated the signature winter bee-like hypopharyngeal gland size (average acini diameter 100.8 ± 6.2 μm at 65 and 70 days of age, N = 26), intermediate between forager (88.7 ± 5.9 μm, N = 24) and nurse (129.5 ± 8.1 μm, N = 24) gland size. We showed that gAHBs do not lack the adaptation to alter their longevity seasonally, though the magnitude of changes is less intense than those observed in EHBs during temperate winters. This suggests that increased longevity in response to limited capacity to rear brood is a shared character of Africanized and European honey bees.
UR - http://www.scopus.com/inward/record.url?scp=85094658135&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85094658135&partnerID=8YFLogxK
U2 - 10.3389/fevo.2020.571094
DO - 10.3389/fevo.2020.571094
M3 - Article
AN - SCOPUS:85094658135
SN - 2296-701X
VL - 8
JO - Frontiers in Ecology and Evolution
JF - Frontiers in Ecology and Evolution
M1 - 571094
ER -