HoneyModels: Machine Learning Honeypots

Ahmed Abdou, Ryan Sheatsley, Yohan Beugin, Tyler Shipp, Patrick McDaniel

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Machine Learning is becoming a pivotal aspect of many systems today, offering newfound performance on classification and prediction tasks, but this rapid integration also comes with new unforeseen vulnerabilities. To harden these systems the ever-growing field of Adversarial Machine Learning has proposed new attack and defense mechanisms. However, a great asymmetry exists as these defensive methods can only provide security to certain models and lack scalability, computational efficiency, and practicality due to overly restrictive constraints. Moreover, newly introduced attacks can easily bypass defensive strategies by making subtle alterations. In this paper, we study an alternate approach inspired by honeypots to detect adversaries. Our approach yields learned models with an embedded watermark. When an adversary initiates an interaction with our model, attacks are encouraged to add this predetermined watermark stimulating detection of adversarial examples. We show that HoneyModels can reveal 69.5% of adversaries attempting to attack a Neural Network while preserving the original functionality of the model. HoneyModels offer an alternate direction to secure Machine Learning that slightly affects the accuracy while encouraging the creation of watermarked adversarial samples detectable by the HoneyModel but indistinguishable from others for the adversary.

Original languageEnglish (US)
Title of host publicationMILCOM 2021 - 2021 IEEE Military Communications Conference
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages886-891
Number of pages6
ISBN (Electronic)9781665439565
DOIs
StatePublished - 2021
Event2021 IEEE Military Communications Conference, MILCOM 2021 - San Diego, United States
Duration: Nov 29 2021Dec 2 2021

Publication series

NameProceedings - IEEE Military Communications Conference MILCOM
Volume2021-November

Conference

Conference2021 IEEE Military Communications Conference, MILCOM 2021
Country/TerritoryUnited States
CitySan Diego
Period11/29/2112/2/21

All Science Journal Classification (ASJC) codes

  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'HoneyModels: Machine Learning Honeypots'. Together they form a unique fingerprint.

Cite this