TY - JOUR
T1 - Horizontally acquired divergent O-antigen contributes to escape from cross-immunity in the classical bordetellae
AU - Hester, Sara E.
AU - Park, Jihye
AU - Goodfield, Laura L.
AU - Feaga, Heather A.
AU - Preston, Andrew
AU - Harvill, Eric T.
N1 - Funding Information:
We acknowledge Laura Weyrich for critical review of this manuscript, and are also grateful to all members of the Harvill lab for support and helpful discussion. We acknowledge Bob Ernst and Mark Pelletier for LPS extraction training. This work was supported by National Institutes of Health (grant number GM083113 to ETH) and by the Agriculture and Food Research Initiative Competitive Grants Program Grant (grant number 2010-65110-20488) from the United States Department of Agriculture (USDA) National Institute of Food and Agriculture (SEH and JP).
PY - 2013
Y1 - 2013
N2 - Background: Horizontal gene transfer (HGT) allows for rapid spread of genetic material between species, increasing genetic and phenotypic diversity. Although HGT contributes to adaptation and is widespread in many bacteria, others show little HGT. This study builds on previous work to analyze the evolutionary mechanisms contributing to variation within the locus encoding a prominent antigen of the classical bordetellae. Results: We observed amongst classical bordetellae discrete regions of the lipopolysaccharide O-antigen locus with higher sequence diversity than the genome average. Regions of this locus had less than 50% sequence similarity, low dN/dS ratios and lower GC content compared to the genome average. Additionally, phylogenetic tree topologies based on genome-wide SNPs were incongruent with those based on genes within these variable regions, suggesting portions of the O-antigen locus may have been horizontally transferred. Furthermore, several predicted recombination breakpoints correspond with the ends of these variable regions. To examine the evolutionary forces that might have selected for this rare example of HGT in bordetellae, we compared in vitro and in vivo phenotypes associated with different O-antigen types. Antibodies against O1- and O2-serotypes were poorly cross-reactive, and did not efficiently kill or mediate clearance of alternative O-type bacteria, while a distinct and poorly immunogenic O-antigen offered no protection against colonization. Conclusions: This study suggests that O-antigen variation was introduced to the classical bordetellae via HGT through recombination. Additionally, genetic variation may be maintained within the O-antigen locus because it can provide escape from immunity to different O-antigen types, potentially allowing for the circulation of different Bordetella strains within the same host population.
AB - Background: Horizontal gene transfer (HGT) allows for rapid spread of genetic material between species, increasing genetic and phenotypic diversity. Although HGT contributes to adaptation and is widespread in many bacteria, others show little HGT. This study builds on previous work to analyze the evolutionary mechanisms contributing to variation within the locus encoding a prominent antigen of the classical bordetellae. Results: We observed amongst classical bordetellae discrete regions of the lipopolysaccharide O-antigen locus with higher sequence diversity than the genome average. Regions of this locus had less than 50% sequence similarity, low dN/dS ratios and lower GC content compared to the genome average. Additionally, phylogenetic tree topologies based on genome-wide SNPs were incongruent with those based on genes within these variable regions, suggesting portions of the O-antigen locus may have been horizontally transferred. Furthermore, several predicted recombination breakpoints correspond with the ends of these variable regions. To examine the evolutionary forces that might have selected for this rare example of HGT in bordetellae, we compared in vitro and in vivo phenotypes associated with different O-antigen types. Antibodies against O1- and O2-serotypes were poorly cross-reactive, and did not efficiently kill or mediate clearance of alternative O-type bacteria, while a distinct and poorly immunogenic O-antigen offered no protection against colonization. Conclusions: This study suggests that O-antigen variation was introduced to the classical bordetellae via HGT through recombination. Additionally, genetic variation may be maintained within the O-antigen locus because it can provide escape from immunity to different O-antigen types, potentially allowing for the circulation of different Bordetella strains within the same host population.
UR - http://www.scopus.com/inward/record.url?scp=84884653417&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84884653417&partnerID=8YFLogxK
U2 - 10.1186/1471-2148-13-209
DO - 10.1186/1471-2148-13-209
M3 - Article
C2 - 24067113
AN - SCOPUS:84884653417
SN - 1471-2148
VL - 13
JO - BMC Evolutionary Biology
JF - BMC Evolutionary Biology
IS - 1
M1 - 209
ER -