TY - JOUR
T1 - Hormone, cytokine, and nutritional regulation of sepsis-induced increases in atrogin-1 and MuRF1 in skeletal muscle
AU - Frost, Robert A.
AU - Nystrom, Gerald J.
AU - Jefferson, Leonard S.
AU - Lang, Charles H.
PY - 2007/2
Y1 - 2007/2
N2 - Various atrophic stimuli increase two muscle-specific E3 ligases, muscle RING finger 1 (MuRF1) and atrogin-1, and knockout mice for these "atrogenes" display resistance to denervation-induced atrophy. The present study determined whether increased atrogin-1 and MuRF1 mRNA are mediated by overproduction of endogenous glucocorticoids or inflammatory cytokines in adult rats and whether atrogene expression can be downregulated by anabolic agents such as insulin-like growth factor (IGF)-I and the nutrient-signaling amino acid leucine. Both atrogin-1 and MuRF1 mRNA in gastrocnemius was upregulated dose and time dependently by endotoxin. Additionally, peritonitis produced by cecal ligation and puncture increased atrogin-1 and MuRF1 mRNA in gastrocnemius (but not soleus or heart) by 8 h, which was sustained for 72 and 24 h, respectively. Whereas the sepsis-induced increase in atrogin-1 expression was completely prevented by IGF-I, the increased MuRF1 was not altered. In contrast to the IGF-I effect, the sepsis-induced increased mRNA of both atrogenes was unresponsive to either acute or repetitive administration of leucine. Whereas exogenous infusion of TNF-α increased atrogin-1 and MuRF1 in gastrocnemius, pretreatment of septic rats with the TNF antagonist TNF-binding protein did not prevent increased expression of either atrogene. Similarly, whereas dexamethasone increased atrogene expression, pretreatment with the glucocorticoid receptor antagonist RU-486 failed to ameliorate the sepsis-induced increase in atrogin-1 and MuRF1. Thus, under in vivo conditions in mature adult rats, the sepsis-induced increase in muscle atrogin-1 and MuRF1 mRNA appears both glucocorticoid and TNF independent and is unresponsive to leucine.
AB - Various atrophic stimuli increase two muscle-specific E3 ligases, muscle RING finger 1 (MuRF1) and atrogin-1, and knockout mice for these "atrogenes" display resistance to denervation-induced atrophy. The present study determined whether increased atrogin-1 and MuRF1 mRNA are mediated by overproduction of endogenous glucocorticoids or inflammatory cytokines in adult rats and whether atrogene expression can be downregulated by anabolic agents such as insulin-like growth factor (IGF)-I and the nutrient-signaling amino acid leucine. Both atrogin-1 and MuRF1 mRNA in gastrocnemius was upregulated dose and time dependently by endotoxin. Additionally, peritonitis produced by cecal ligation and puncture increased atrogin-1 and MuRF1 mRNA in gastrocnemius (but not soleus or heart) by 8 h, which was sustained for 72 and 24 h, respectively. Whereas the sepsis-induced increase in atrogin-1 expression was completely prevented by IGF-I, the increased MuRF1 was not altered. In contrast to the IGF-I effect, the sepsis-induced increased mRNA of both atrogenes was unresponsive to either acute or repetitive administration of leucine. Whereas exogenous infusion of TNF-α increased atrogin-1 and MuRF1 in gastrocnemius, pretreatment of septic rats with the TNF antagonist TNF-binding protein did not prevent increased expression of either atrogene. Similarly, whereas dexamethasone increased atrogene expression, pretreatment with the glucocorticoid receptor antagonist RU-486 failed to ameliorate the sepsis-induced increase in atrogin-1 and MuRF1. Thus, under in vivo conditions in mature adult rats, the sepsis-induced increase in muscle atrogin-1 and MuRF1 mRNA appears both glucocorticoid and TNF independent and is unresponsive to leucine.
UR - http://www.scopus.com/inward/record.url?scp=33846875462&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33846875462&partnerID=8YFLogxK
U2 - 10.1152/ajpendo.00359.2006
DO - 10.1152/ajpendo.00359.2006
M3 - Article
C2 - 17003238
AN - SCOPUS:33846875462
SN - 0193-1849
VL - 292
SP - E501-E512
JO - American Journal of Physiology - Endocrinology and Metabolism
JF - American Journal of Physiology - Endocrinology and Metabolism
IS - 2
ER -