Abstract
Baculoviruses manipulate host climbing behaviour to ensure that the hosts die at elevated positions on host plants to facilitate virus proliferation and transmission, which is a process referred to as tree-top disease. However, the detailed molecular mechanism underlying tree-top disease has not been elucidated. Using transcriptome analysis, we showed that two hormone signals, juvenile hormone (JH) and 20-hydroxyecdysone (20E), are key components involved in HaSNPV-induced tree-top disease in Helicoverpa armigera larvae. RNAi-mediated knockdown and exogenous hormone treatment assays demonstrated that 20E inhibits virus-induced tree-top disease, while JH mediates tree-top disease behaviour. Knockdown of BrZ2, a downstream signal of JH and 20E, promoted HaSNPV-induced tree-top disease. We also found that two miRNAs target BrZ2 and are involved in the cross-talk regulation between 20E and JH manipulating HaSNPV replication, time to death and HaSNPV-induced tree-top disease.
Original language | English (US) |
---|---|
Pages (from-to) | 459-475 |
Number of pages | 17 |
Journal | Molecular ecology |
Volume | 27 |
Issue number | 2 |
DOIs | |
State | Published - Jan 2018 |
All Science Journal Classification (ASJC) codes
- Ecology, Evolution, Behavior and Systematics
- Genetics