HOx budgets in a deciduous forest: Results from the PROPHET summer 1998 campaign

D. Tan, I. Faloona, J. B. Simpas, W. Brune, P. B. Shepson, T. L. Couch, A. L. Sumner, M. A. Carroll, T. Thornberry, E. Apel, D. Riemer, W. Stockwell

Research output: Contribution to journalArticlepeer-review

35 Scopus citations


Results from a tightly constrained photochemical point model for OH and HO2 are compared to OH and HO2 data collected during the Program for Research on Oxidants: Photochemistry, Emissions, and Transport (PROPHET) summer 1998 intensive campaign held in northern Michigan. The PROPHET campaign was located in a deciduous forest marked by relatively low NOx levels and high isoprene emissions. Detailed HOx budgets are presented. The model is generally unable to match the measured OH, with the observations 2.7 times greater than the model on average. The model HO2, however, is in good agreement with the measured HO2. Even with an additional postulated OH source from the ozonolysis of unmeasured terpenes, the measured OH is 1.5 times greater than the model; the model HO2 with this added source is 15% to 30% higher than the measured HO2. Moreover, the HO2/OH ratios as modeled are 2.5 to 4 times higher than the measured ratios, indicating that the cycling between OH and HO2 is poorly described by the model. We discuss possible reasons for the discrepancies.

Original languageEnglish (US)
Article number2001JD900016
Pages (from-to)24407-24427
Number of pages21
JournalJournal of Geophysical Research Atmospheres
Issue numberD20
StatePublished - Oct 27 2001

All Science Journal Classification (ASJC) codes

  • Forestry
  • Aquatic Science
  • Soil Science
  • Water Science and Technology
  • Earth-Surface Processes
  • Geochemistry and Petrology
  • Geophysics
  • Oceanography
  • Palaeontology
  • Ecology
  • Space and Planetary Science
  • Earth and Planetary Sciences (miscellaneous)
  • Atmospheric Science


Dive into the research topics of 'HOx budgets in a deciduous forest: Results from the PROPHET summer 1998 campaign'. Together they form a unique fingerprint.

Cite this