TY - GEN
T1 - How Do We Move
T2 - 35th AAAI Conference on Artificial Intelligence, AAAI 2021
AU - Wei, Hua
AU - Xu, Dongkuan
AU - Liang, Junjie
AU - Li, Zhenhui
N1 - Publisher Copyright:
Copyright © 2021, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2021
Y1 - 2021
N2 - Modeling how human moves in the space is useful for policy-making in transportation, public safety, and public health. The human movements can be viewed as a dynamic process that human transits between states (e.g., locations) over time. In the human world where intelligent agents like humans or vehicles with human drivers play an important role, the states of agents mostly describe human activities, and the state transition is influenced by both the human decisions and physical constraints from the real-world system (e.g., agents need to spend time to move over a certain distance). Therefore, the modeling of state transition should include the modeling of the agent’s decision process and the physical system dynamics. In this paper, we propose MoveSD to model state transition in human movement from a novel perspective, by learning the decision model and integrating the system dynamics. MoveSD learns the human movement with Generative Adversarial Imitation Learning and integrates the stochastic constraints from system dynamics in the learning process. To the best of our knowledge, we are the first to learn to model the state transition of moving agents with system dynamics. In extensive experiments on real-world datasets, we demonstrate that the proposed method can generate trajectories similar to real-world ones, and outperform the state-of-the-art methods in predicting the next location and generating long-term future trajectories.
AB - Modeling how human moves in the space is useful for policy-making in transportation, public safety, and public health. The human movements can be viewed as a dynamic process that human transits between states (e.g., locations) over time. In the human world where intelligent agents like humans or vehicles with human drivers play an important role, the states of agents mostly describe human activities, and the state transition is influenced by both the human decisions and physical constraints from the real-world system (e.g., agents need to spend time to move over a certain distance). Therefore, the modeling of state transition should include the modeling of the agent’s decision process and the physical system dynamics. In this paper, we propose MoveSD to model state transition in human movement from a novel perspective, by learning the decision model and integrating the system dynamics. MoveSD learns the human movement with Generative Adversarial Imitation Learning and integrates the stochastic constraints from system dynamics in the learning process. To the best of our knowledge, we are the first to learn to model the state transition of moving agents with system dynamics. In extensive experiments on real-world datasets, we demonstrate that the proposed method can generate trajectories similar to real-world ones, and outperform the state-of-the-art methods in predicting the next location and generating long-term future trajectories.
UR - http://www.scopus.com/inward/record.url?scp=85130037064&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85130037064&partnerID=8YFLogxK
U2 - 10.1609/aaai.v35i5.16571
DO - 10.1609/aaai.v35i5.16571
M3 - Conference contribution
AN - SCOPUS:85130037064
T3 - 35th AAAI Conference on Artificial Intelligence, AAAI 2021
SP - 4445
EP - 4452
BT - 35th AAAI Conference on Artificial Intelligence, AAAI 2021
PB - Association for the Advancement of Artificial Intelligence
Y2 - 2 February 2021 through 9 February 2021
ER -