How older adults regulate lateral stepping on narrowing walking paths

Research output: Contribution to journalArticlepeer-review


Walking humans often navigate complex, varying walking paths. To reduce falls, we must first determine how older adults purposefully vary their steps in contexts that challenge balance. Here, 20 young (21.7±2.6 yrs) and 18 older (71.6±6.0 yrs) healthy adults walked on virtual paths that slowly narrowed (from 45 cm to as narrow as 5 cm). Participants could switch onto an “easier” path whenever they chose. We applied our Goal Equivalent Manifold framework to quantify how participants adjusted their lateral stepping variability and step-to-step corrections of step width and lateral position as these paths narrowed. We also extracted these characteristics at the locations where participants switched paths. As paths narrowed, all participants reduced their lateral stepping variability, but older adults less so. To stay on the narrowing paths, young adults increasingly corrected step-to-step deviations in lateral position more, by correcting step-to-step deviations in step width less. Conversely, as older adults also increasingly corrected lateral position deviations, they did so without sacrificing correcting step-to-step deviations in step width, presumably to preserve balance. While older adults left the narrowing paths sooner, several of their lateral stepping characteristics remained similar to those of younger adults. Older adults largely maintained overall walking performance per se, but they did so by changing how they balanced the competing stepping regulation requirements intrinsic to the task: maintaining position vs. step width. Thus, balancing how to achieve multiple concurrent stepping goals while walking provides older adults the flexibility they need to appropriately adapt their stepping on continuously narrowing walking paths.

Original languageEnglish (US)
Article number111836
JournalJournal of Biomechanics
StatePublished - Nov 2023

All Science Journal Classification (ASJC) codes

  • Biophysics
  • Biomedical Engineering
  • Orthopedics and Sports Medicine
  • Rehabilitation

Cite this