TY - JOUR
T1 - HTreeQA
T2 - Using semi-perfect phylogeny trees in quantitative trait loci study on genotype data
AU - Zhang, Zhaojun
AU - Zhang, Xiang
AU - Wang, Wei
PY - 2012/2
Y1 - 2012/2
N2 - With the advances in high-throughput genotyping technology, the study of quantitative trait loci (QTL) has emerged as a promising tool to understand the genetic basis of complex traits. Methodology development for the study of QTL recently has attracted significant research attention. Local phylogenybased methods have been demonstrated to be powerful tools for uncovering significant associations between phenotypes and single-nucleotide polymorphism markers. However, most existing methods are designed for homozygous genotypes, and a separate haplotype reconstruction step is often needed to resolve heterozygous genotypes. This approach has limited power to detect nonadditive genetic effects and imposes an extensive computational burden. In this article, we propose a new method, HTreeQA, that uses a tristate semi-perfect phylogeny tree to approximate the perfect phylogeny used in existing methods. The semi-perfect phylogeny trees are used as high-level markers for association study. HTreeQA uses the genotype data as direct input without phasing. HTreeQA can handle complex local population structures. It is suitable for QTL mapping on any mouse populations, including the incipient Collaborative Cross lines. Applied HTreeQA, significant QTLs are found for two phenotypes of the PreCC lines, white head spot and running distance at day 5/6. These findings are consistent with known genes and QTL discovered in independent studies. Simulation studies under three different genetic models show that HTreeQA can detect a wider range of genetic effects and is more efficient than existing phylogeny-based approaches. We also provide rigorous theoretical analysis to show that HTreeQA has a lower error rate than alternative methods.
AB - With the advances in high-throughput genotyping technology, the study of quantitative trait loci (QTL) has emerged as a promising tool to understand the genetic basis of complex traits. Methodology development for the study of QTL recently has attracted significant research attention. Local phylogenybased methods have been demonstrated to be powerful tools for uncovering significant associations between phenotypes and single-nucleotide polymorphism markers. However, most existing methods are designed for homozygous genotypes, and a separate haplotype reconstruction step is often needed to resolve heterozygous genotypes. This approach has limited power to detect nonadditive genetic effects and imposes an extensive computational burden. In this article, we propose a new method, HTreeQA, that uses a tristate semi-perfect phylogeny tree to approximate the perfect phylogeny used in existing methods. The semi-perfect phylogeny trees are used as high-level markers for association study. HTreeQA uses the genotype data as direct input without phasing. HTreeQA can handle complex local population structures. It is suitable for QTL mapping on any mouse populations, including the incipient Collaborative Cross lines. Applied HTreeQA, significant QTLs are found for two phenotypes of the PreCC lines, white head spot and running distance at day 5/6. These findings are consistent with known genes and QTL discovered in independent studies. Simulation studies under three different genetic models show that HTreeQA can detect a wider range of genetic effects and is more efficient than existing phylogeny-based approaches. We also provide rigorous theoretical analysis to show that HTreeQA has a lower error rate than alternative methods.
UR - http://www.scopus.com/inward/record.url?scp=84863176396&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84863176396&partnerID=8YFLogxK
U2 - 10.1534/g3.111.001768
DO - 10.1534/g3.111.001768
M3 - Article
C2 - 22384396
AN - SCOPUS:84863176396
SN - 2160-1836
VL - 2
SP - 175
EP - 189
JO - G3: Genes, Genomes, Genetics
JF - G3: Genes, Genomes, Genetics
IS - 2
ER -