Abstract
We present the highest redshift detections of resolved Lyα emission, using Hubble Space Telescope (HST)/Advanced Camera for Surveys F658N narrowband-imaging data taken in parallel with the Wide Field Camera 3 Early Release Science program in the GOODS Chandra Deep Field-South. We detect Lyα emission from three spectroscopically confirmed z = 4.4 Lyα emitting galaxies (LAEs), more than doubling the sample of LAEs with resolved Lyα emission. Comparing the light distribution between the rest-frame ultraviolet continuum and narrowband images, we investigate the escape of Lyα photons at high redshift. While our data do not support a positional offset between the Lyα and rest-frame ultraviolet (UV) continuum emission, the half-light radius in one out of the three galaxies is significantly (>1σ) larger in Lyα than in the rest-frame UV continuum. Stacking the three LAEs in both the narrowband and UV continuum images, we find that the Lyα light appears larger than the rest-frame UV at 4.2σ significance. This Lyα flux detected with HST is a factor of 4-10 less than observed in similar filters from the ground. These results together imply that the Lyα emission is not strictly confined to its indigenous star-forming regions. Rather, for at least one object the Lyα emission is more extended, with the missing HST flux possibly existing in a diffuse outer halo. This suggests that the radiative transfer of Lyα photons in high-redshift LAEs is complicated, with the interstellar-medium geometry and/or outflows playing a significant role in galaxies at these redshifts.
Original language | English (US) |
---|---|
Article number | 5 |
Journal | Astrophysical Journal |
Volume | 735 |
Issue number | 1 |
DOIs | |
State | Published - Jul 1 2011 |
All Science Journal Classification (ASJC) codes
- Astronomy and Astrophysics
- Space and Planetary Science