Human exposure to air contaminants under the far-UVC system operation in an office: effects of lamp position and ventilation condition

Seongjun Park, Donghyun Rim

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

The far-UVC (222 nm) system has emerged as a solution for controlling airborne transmission, yet its effect on indoor air quality, particularly concerning positioning, remains understudied. In this study, we examined the impact of far-UVC lamp position on the disinfection and secondary contaminant formation in a small office. We employed a three-dimensional computational fluid dynamics (CFD) model to integrate UV intensity fields formed by different lamp positions (ceiling-mounted, wall-mounted, and stand-alone types) along with the air quality model. Our findings reveal that the ceiling-mounted type reduces human exposure to airborne pathogens by up to 80% compared to scenarios without far-UVC. For all the lamp positions, O3 concentration in the breathing zone increases by 4–6 ppb after one hour of operation. However, it should be noted that a high concentration zone (> 25 ppb) forms near the lamp when it is turned on. Moreover, ventilation plays a crucial role in determining human exposure to airborne pathogens and secondary contaminants. Increasing the ventilation rate from 0.7 h−1 to 4 h−1 reduces airborne pathogen and secondary contaminant concentrations by up to 90%. However, caution is warranted as higher ventilation rates can lead to elevated O3 indoors, especially under conditions of high outdoor O3 concentrations.

Original languageEnglish (US)
Article number24465
JournalScientific reports
Volume14
Issue number1
DOIs
StatePublished - Dec 2024

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'Human exposure to air contaminants under the far-UVC system operation in an office: effects of lamp position and ventilation condition'. Together they form a unique fingerprint.

Cite this