Hybrid approaches for classification under information acquisition cost constraint

Research output: Contribution to journalArticlepeer-review

10 Scopus citations


We address a problem of classification with information acquisition cost constraint (CIACC). The objective of the CIACC problem is to develop a classification function that maximizes correct classifications under the user defined information acquisition cost constraint. We propose hybrid simulated annealing and neural network (SA-ANN), and tabu search and neural network (TS-ANN) procedures to solve the CIACC problem. Using simulated and a real-world data set from medical domain, we show that the proposed hybrid procedures solve the CIACC problem. The results of our experiments indicate that the performance of hybrid approaches is sensitive to the data distribution, and memory-based hybrid tabu search approaches may perform as good as or better than probabilistic hybrid simulated annealing approach.

Original languageEnglish (US)
Pages (from-to)228-241
Number of pages14
JournalDecision Support Systems
Issue number1
StatePublished - Nov 2005

All Science Journal Classification (ASJC) codes

  • Management Information Systems
  • Information Systems
  • Developmental and Educational Psychology
  • Arts and Humanities (miscellaneous)
  • Information Systems and Management


Dive into the research topics of 'Hybrid approaches for classification under information acquisition cost constraint'. Together they form a unique fingerprint.

Cite this