TY - JOUR
T1 - Hybrid CMOS detectors for the Lynx X-ray surveyor high definition X-ray imager
AU - Hull, Samuel V.
AU - Falcone, Abraham D.
AU - Bray, Evan
AU - Wages, Mitchell
AU - Mcquaide, Maria
AU - Burrows, David N.
N1 - Publisher Copyright:
© The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
PY - 2019/4/1
Y1 - 2019/4/1
N2 - X-ray hybrid CMOS detectors (HCDs) are a promising candidate for future X-ray missions requiring high throughput and fine angular resolution along with large field-of-view, such as the high-definition X-ray imager (HDXI) instrument on the Lynx X-ray surveyor mission concept. These devices offer fast readout capability, low power consumption, and radiation hardness while maintaining high detection efficiency from 0.2 to 10 keV. In addition, X-ray hybrid CMOS sensors may be fabricated with small pixel sizes to accommodate high-resolution optics and have shown great improvements in recent years in noise and spectral resolution performance. In particular, 12.5-μm pitch prototype devices that include in-pixel correlated double sampling capability and crosstalk eliminating capacitive transimpedance amplifiers, have been fabricated and tested. These detectors have achieved read noise as low as 5.4 e-, and we measure the best energy resolution to be 148 eV (2.5%) at 5.9 keV and 78 eV (14.9%) at 0.53 keV. We will describe the characterization of these prototype small-pixel X-ray HCDs, and we will discuss their applicability to the HDXI instrument on Lynx.
AB - X-ray hybrid CMOS detectors (HCDs) are a promising candidate for future X-ray missions requiring high throughput and fine angular resolution along with large field-of-view, such as the high-definition X-ray imager (HDXI) instrument on the Lynx X-ray surveyor mission concept. These devices offer fast readout capability, low power consumption, and radiation hardness while maintaining high detection efficiency from 0.2 to 10 keV. In addition, X-ray hybrid CMOS sensors may be fabricated with small pixel sizes to accommodate high-resolution optics and have shown great improvements in recent years in noise and spectral resolution performance. In particular, 12.5-μm pitch prototype devices that include in-pixel correlated double sampling capability and crosstalk eliminating capacitive transimpedance amplifiers, have been fabricated and tested. These detectors have achieved read noise as low as 5.4 e-, and we measure the best energy resolution to be 148 eV (2.5%) at 5.9 keV and 78 eV (14.9%) at 0.53 keV. We will describe the characterization of these prototype small-pixel X-ray HCDs, and we will discuss their applicability to the HDXI instrument on Lynx.
UR - http://www.scopus.com/inward/record.url?scp=85069517849&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85069517849&partnerID=8YFLogxK
U2 - 10.1117/1.JATIS.5.2.021018
DO - 10.1117/1.JATIS.5.2.021018
M3 - Article
AN - SCOPUS:85069517849
SN - 2329-4124
VL - 5
JO - Journal of Astronomical Telescopes, Instruments, and Systems
JF - Journal of Astronomical Telescopes, Instruments, and Systems
IS - 2
M1 - 021018
ER -