Hybrid invariance and stability of a feedback linearizing controller for powered prostheses

Anne E. Martin, Robert D. Gregg

Research output: Chapter in Book/Report/Conference proceedingConference contribution

24 Scopus citations

Abstract

The development of powered lower-limb prostheses has the potential to significantly improve amputees' quality of life. By applying advanced control schemes, such as hybrid zero dynamics (HZD), to prostheses, more intelligent prostheses could be designed. Originally developed to control bipedal robots, HZD-based control specifies the motion of the actuated degrees of freedom using output functions to be zeroed, and the required torques are calculated using feedback linearization. Previous work showed that an HZD-like prosthesis controller can successfully control the stance period of gait. This paper shows that an HZD-based prosthesis controller can be used for the entire gait cycle and that feedback linearization can be performed using only information measured with on-board sensors. An analytic metric for orbital stability of a two-step periodic gait is developed. The results are illustrated in simulation.

Original languageEnglish (US)
Title of host publicationACC 2015 - 2015 American Control Conference
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4670-4676
Number of pages7
ISBN (Electronic)9781479986842
DOIs
StatePublished - Jul 28 2015
Event2015 American Control Conference, ACC 2015 - Chicago, United States
Duration: Jul 1 2015Jul 3 2015

Publication series

NameProceedings of the American Control Conference
Volume2015-July
ISSN (Print)0743-1619

Other

Other2015 American Control Conference, ACC 2015
Country/TerritoryUnited States
CityChicago
Period7/1/157/3/15

All Science Journal Classification (ASJC) codes

  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Hybrid invariance and stability of a feedback linearizing controller for powered prostheses'. Together they form a unique fingerprint.

Cite this