TY - JOUR
T1 - Hybrid manufacturing—Locating AM hubs using a two-stage facility location approach
AU - Strong, Danielle
AU - Kay, Michael
AU - Conner, Brett
AU - Wakefield, Thomas
AU - Manogharan, Guha
N1 - Funding Information:
This work was supported by the NIST AMTech program under Grant 70NANB15H070 .
Publisher Copyright:
© 2018 Elsevier B.V.
PY - 2019/1
Y1 - 2019/1
N2 - Hybrid Manufacturing is defined as the integration of Additive Manufacturing (AM), specifically metal AM, with traditional manufacturing post-processing such as heat treatment and machining. Hybrid AM enables Small and Medium Enterprises (SME) who can offer post-processing services to integrate into the growing AM supply chain. Most near-net metal AM parts require heat treatment processes (e.g. residual stress relieving/annealing) before machining to achieve final engineering specification. This research investigates a two-stage facility model to optimize the locations and capacities for new metal AM hubs which require two sequential post-processing services: heat treatment and machining. Using North American Industry Classification System (NAICS) data for machine shops and heat treatment facilities in the U.S., a p-median location model is used to determine the optimal locations for AM hub centers based on: (1) geographical data, (2) demand and (3) fixed and operational costs of hybrid-AM processing. Results from this study have identified: (a) candidate US counties to locate metal AM hubs, (b) total cost (fixed, operational and transportation), (c) capacity utilization of the AM hubs and (d) demand assignments across machine shops – heat treatment facilities – AM hubs. It was found that 2-stage p-Median model identified 22 A M hub locations as the initial sites for AM hubs which grows to 35 A M hubs as demand increases. It was also found that relatively fewer number of heat treatment facilities than machine shops resulted in a more concentrated locations of AM hubs. In addition, transportation costs were not adversely affected by the inclusion of as-build plates and showed that including heat treatment facilities as part of the hybrid AM supply chain will be mutually beneficial to all stakeholders of metal hybrid AM supply chain, i.e. AM → Heat treatment → Machining.
AB - Hybrid Manufacturing is defined as the integration of Additive Manufacturing (AM), specifically metal AM, with traditional manufacturing post-processing such as heat treatment and machining. Hybrid AM enables Small and Medium Enterprises (SME) who can offer post-processing services to integrate into the growing AM supply chain. Most near-net metal AM parts require heat treatment processes (e.g. residual stress relieving/annealing) before machining to achieve final engineering specification. This research investigates a two-stage facility model to optimize the locations and capacities for new metal AM hubs which require two sequential post-processing services: heat treatment and machining. Using North American Industry Classification System (NAICS) data for machine shops and heat treatment facilities in the U.S., a p-median location model is used to determine the optimal locations for AM hub centers based on: (1) geographical data, (2) demand and (3) fixed and operational costs of hybrid-AM processing. Results from this study have identified: (a) candidate US counties to locate metal AM hubs, (b) total cost (fixed, operational and transportation), (c) capacity utilization of the AM hubs and (d) demand assignments across machine shops – heat treatment facilities – AM hubs. It was found that 2-stage p-Median model identified 22 A M hub locations as the initial sites for AM hubs which grows to 35 A M hubs as demand increases. It was also found that relatively fewer number of heat treatment facilities than machine shops resulted in a more concentrated locations of AM hubs. In addition, transportation costs were not adversely affected by the inclusion of as-build plates and showed that including heat treatment facilities as part of the hybrid AM supply chain will be mutually beneficial to all stakeholders of metal hybrid AM supply chain, i.e. AM → Heat treatment → Machining.
UR - http://www.scopus.com/inward/record.url?scp=85057602529&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85057602529&partnerID=8YFLogxK
U2 - 10.1016/j.addma.2018.11.027
DO - 10.1016/j.addma.2018.11.027
M3 - Article
AN - SCOPUS:85057602529
SN - 2214-8604
VL - 25
SP - 469
EP - 476
JO - Additive Manufacturing
JF - Additive Manufacturing
ER -