Hybrid methods for POS guessing of Chinese unknown words

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Scopus citations

Abstract

This paper describes a hybrid model that combines a rule-based model with two statistical models for the task of POS guessing of Chinese unknown words. The rule-based model is sensitive to the type, length, and internal structure of unknown words, and the two statistical models utilize contextual information and the likelihood for a character to appear in a particular position of words of a particular length and POS category. By combining models that use different sources of information, the hybrid model achieves a precision of 89%, a significant improvement over the best result reported in previous studies, which was 69%.

Original languageEnglish (US)
Title of host publicationACL-05 - 43rd Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference
PublisherAssociation for Computational Linguistics (ACL)
Pages1-6
Number of pages6
ISBN (Print)1932432515, 9781932432510
DOIs
StatePublished - 2005
Event43rd Annual Meeting of the Association for Computational Linguistics, ACL-05 - Ann Arbor, MI, United States
Duration: Jun 25 2005Jun 30 2005

Publication series

NameACL-05 - 43rd Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference

Other

Other43rd Annual Meeting of the Association for Computational Linguistics, ACL-05
Country/TerritoryUnited States
CityAnn Arbor, MI
Period6/25/056/30/05

All Science Journal Classification (ASJC) codes

  • Language and Linguistics
  • Linguistics and Language

Fingerprint

Dive into the research topics of 'Hybrid methods for POS guessing of Chinese unknown words'. Together they form a unique fingerprint.

Cite this