TY - JOUR
T1 - Hybridization and enzymatic extension of Au nanoparticle-bound oligonucleotides
AU - Nicewarner Peña, Sheila R.
AU - Raina, Surabhi
AU - Goodrich, Glenn P.
AU - Fedoroff, Nina V.
AU - Keating, Christine D.
PY - 2002/6/26
Y1 - 2002/6/26
N2 - We have investigated the impact of steric effects on the hybridization and enzymatic extension of oligonucleotides bound to 12-nm colloidal Au particles. In these experiments, a nanoparticle-bound 12-mer sequence is hybridized either to its solution phase 12-mer complement or to an 88-mer template sequence. The particle-bound oligonucleotide serves as a primer for enzymatic extension reactions, in which covalent incorporation of nucleotides to form the complement of the template is achieved by the action of DNA polymerase. Primers were attached via-C6H12SH,-C12H24SH, and -TTACAATC6H12SH linkers attached at the 5′ end. Primer coverage on the nanoparticles was varied by dilution with 5′HSC6H12AAA AAA3′. Hybridization efficiencies were determined as a function of linker length, primer coverage, complement length (12-mer vs 88-mer), and primer:complement concentration ratio. In all cases, hybridization for the 88-mer was less efficient than for the 12-mer. Low primer surface coverages, greater particle-primer separation, and higher primer:complement ratios led to optimal hybridization. Hybridization efficiencies as high as 98% and 75% were observed for the 12-mer and 88-mer, respectively. Enzymatic extension of particle-bound primers was observed under all conditions tested; however, the efficiency of the reaction was strongly affected by linker length and primer coverage. Extension of primers attached by the longest linker was as efficient as the solution-phase reaction.
AB - We have investigated the impact of steric effects on the hybridization and enzymatic extension of oligonucleotides bound to 12-nm colloidal Au particles. In these experiments, a nanoparticle-bound 12-mer sequence is hybridized either to its solution phase 12-mer complement or to an 88-mer template sequence. The particle-bound oligonucleotide serves as a primer for enzymatic extension reactions, in which covalent incorporation of nucleotides to form the complement of the template is achieved by the action of DNA polymerase. Primers were attached via-C6H12SH,-C12H24SH, and -TTACAATC6H12SH linkers attached at the 5′ end. Primer coverage on the nanoparticles was varied by dilution with 5′HSC6H12AAA AAA3′. Hybridization efficiencies were determined as a function of linker length, primer coverage, complement length (12-mer vs 88-mer), and primer:complement concentration ratio. In all cases, hybridization for the 88-mer was less efficient than for the 12-mer. Low primer surface coverages, greater particle-primer separation, and higher primer:complement ratios led to optimal hybridization. Hybridization efficiencies as high as 98% and 75% were observed for the 12-mer and 88-mer, respectively. Enzymatic extension of particle-bound primers was observed under all conditions tested; however, the efficiency of the reaction was strongly affected by linker length and primer coverage. Extension of primers attached by the longest linker was as efficient as the solution-phase reaction.
UR - http://www.scopus.com/inward/record.url?scp=0037178092&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0037178092&partnerID=8YFLogxK
U2 - 10.1021/ja0177915
DO - 10.1021/ja0177915
M3 - Article
C2 - 12071740
AN - SCOPUS:0037178092
SN - 0002-7863
VL - 124
SP - 7314
EP - 7323
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 25
ER -