Abstract
This paper presents ongoing hydraulic fracturing modeling work in support of the Department of Energy’s EGS Collab project. CFRAC, a hydraulic fracturing research code with discrete fracture modeling capabilities was used in the modeling. The models are run under different geomechanical conditions to predict the hydraulic fracturing treatments to be pumped within EGS Collab’s experiments in Sanford Underground Research Facility (SURF). Effect of the parameters such as a varying stress field and the presence of natural fractures are investigated. The simulations show that when injecting at 0.1 L/s for 180 s with uniform stress field conditions, a penny-shaped fracture with maximum aperture of 0.14 mm at radial extent of about 8 m is created. A disturbance in the stress field, caused by the presence of an offset mine drift, forced the fractures to grow asymmetrically. The presence of an intersecting natural fracture halted growth of the hydraulic fracture. These results agree with other modeling work done within the EGS Collab team.
Original language | English (US) |
---|---|
State | Published - Jan 1 2018 |
Event | 52nd U.S. Rock Mechanics/Geomechanics Symposium - Seattle, United States Duration: Jun 17 2018 → Jun 20 2018 |
Other
Other | 52nd U.S. Rock Mechanics/Geomechanics Symposium |
---|---|
Country/Territory | United States |
City | Seattle |
Period | 6/17/18 → 6/20/18 |
All Science Journal Classification (ASJC) codes
- Geophysics
- Geochemistry and Petrology