Hydrodynamic slip characteristics of shear-driven water flow in nanoscale carbon slits

Abdul Aziz Shuvo, Luis E. Paniagua-Guerra, Xiang Yang, Bladimir Ramos-Alvarado

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

This paper reports on the effects of shear rate and interface modeling parameters on the hydrodynamic slip length (LS) for water-graphite interfaces calculated using non-equilibrium molecular dynamics. Five distinct non-bonded solid-liquid interaction parameters were considered to assess their impact on LS. The interfacial force field derivations included sophisticated electronic structure calculation-informed and empirically determined parameters. All interface models exhibited a similar and bimodal LS response when varying the applied shear rate. LS in the low shear rate regime (LSR) is in good agreement with previous calculations obtained through equilibrium molecular dynamics. As the shear rate increases, LS sharply increases and asymptotes to a constant value in the high shear regime (HSR). It is noteworthy that LS in both the LSR and HSR can be characterized by the density depletion length, whereas solid-liquid adhesion metrics failed to do so. For all interface models, LHSR calculations were, on average, ∼28% greater than LLSR, and this slip jump was confirmed using the SPC/E and TIP4P/2005 water models. To address the LS transition from the LSR to the HSR, the viscosity of water and the interfacial friction coefficient were investigated. It was observed that in the LSR, the viscosity and friction coefficient decreased at a similar rate, while in the LSR-to-HSR transition, the friction coefficient decreased at a faster rate than the shear viscosity until they reached a new equilibrium, hence explaining the LS-bimodal behavior. This study provides valuable insights into the interplay between interface modeling parameters, shear rate, and rheological properties in understanding hydrodynamic slip behavior.

Original languageEnglish (US)
Article number194704
JournalJournal of Chemical Physics
Volume160
Issue number19
DOIs
StatePublished - May 21 2024

All Science Journal Classification (ASJC) codes

  • General Physics and Astronomy
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'Hydrodynamic slip characteristics of shear-driven water flow in nanoscale carbon slits'. Together they form a unique fingerprint.

Cite this