Hydrogel-colloid interfacial interactions: A study of tailored adhesion using optical tweezers

Amir Sheikhi, Reghan J. Hill

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

Dynamics of colloidal particles adhering to soft, deformable substrates, such as tissues, biofilms, and hydrogels play a key role in many biological and biomimetic processes. These processes, including, but not limited to colloid-based delivery, stitching, and sorting, involve microspheres exploring the vicinity of soft, sticky materials in which the colloidal dynamics are affected by the fluid environment (e.g., viscous coupling), inter-molecular interactions between the colloids and substrates (e.g., Derjaguin-Landau-Verwey-Overbeek (DLVO) theory), and the viscoelastic properties of contact region. To better understand colloidal dynamics at soft interfaces, an optical tweezers back-focal-plane interferometry apparatus was developed to register the transverse Brownian motion of a silica microsphere in the vicinity of polyacrylamide (PA) hydrogel films. The time-dependent mean-squared displacements are well described by a single exponential relaxation, furnishing measures of the transverse interfacial diffusion coefficient and binding stiffness. Substrates with different elasticities were prepared by changing the PA crosslinking density, and the inter-molecular interactions were adjusted by coating the microspheres with fluid membranes. Stiffer PA hydrogels (with bulk Young's moduli ≈1-10 kPa) immobilize the microspheres more firmly (lower diffusion coefficient and position variance), and coating the particles with zwitterionic lipid bilayers (DOPC) completely eliminates adhesion, possibly by repulsive dispersion forces. Remarkably, embedding polyethylene glycol-grafted lipid bilayers (DSPE-PEG2k-Amine) in the zwitterionic fluid membranes produces stronger adhesion, possibly because of polymer-hydrogel attraction and entanglement. This study provides new insights to guide the design of nanoparticles and substrates with tunable adhesion, leading to smarter delivery, sorting, and screening of micro- and nano-systems.

Original languageEnglish (US)
Pages (from-to)6575-6587
Number of pages13
JournalSoft matter
Volume12
Issue number31
DOIs
StatePublished - 2016

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Hydrogel-colloid interfacial interactions: A study of tailored adhesion using optical tweezers'. Together they form a unique fingerprint.

Cite this