TY - JOUR
T1 - Hydrogen production via decomposition of hydrogen sulfide by synergy of non-thermal plasma and semiconductor catalysis
AU - Zhao, Lu
AU - Wang, Yao
AU - Li, Xiang
AU - Wang, Anjie
AU - Song, Chunshan
AU - Hu, Yongkang
N1 - Funding Information:
The authors acknowledge the financial supports from NSFC ( 20773020 , 20973030 , 21173033 , U1162203 ), the “863” Project (2008AA030803), and the Ph.D. Programs of MOE (20100041110016).
PY - 2013/11/13
Y1 - 2013/11/13
N2 - Direct H2S decomposition induced by plasma with an aid of alumina-supported metal sulfide semiconductors (ZnS/Al2O3 and CdS/Al2O3) for the production of hydrogen was investigated in a dielectric barrier discharge (DBD) reactor. Effects of specific input energy (SIE), feed flow rate, metal sulfide loading, and added hydrogen on the performance of H2S decomposition were studied. With the aids of ZnS/Al2O3 and CdS/Al2O3, full conversion was obtained at reasonably low energy costs. The 100-h test runs indicated that both ZnS/Al2O3 and CdS/Al 2O3 were stable in the course of H2S decomposition. A supported metal sulfide solid solution (Zn0.4Cd 0.6S/Al2O3) exhibited higher performance than ZnS/Al2O3 and CdS/Al2O3, achieving full conversion at a reduced energy cost. The mechanism of the plasma-induced H2S decomposition with an aid of a semiconductor catalyst was tentatively proposed.
AB - Direct H2S decomposition induced by plasma with an aid of alumina-supported metal sulfide semiconductors (ZnS/Al2O3 and CdS/Al2O3) for the production of hydrogen was investigated in a dielectric barrier discharge (DBD) reactor. Effects of specific input energy (SIE), feed flow rate, metal sulfide loading, and added hydrogen on the performance of H2S decomposition were studied. With the aids of ZnS/Al2O3 and CdS/Al2O3, full conversion was obtained at reasonably low energy costs. The 100-h test runs indicated that both ZnS/Al2O3 and CdS/Al 2O3 were stable in the course of H2S decomposition. A supported metal sulfide solid solution (Zn0.4Cd 0.6S/Al2O3) exhibited higher performance than ZnS/Al2O3 and CdS/Al2O3, achieving full conversion at a reduced energy cost. The mechanism of the plasma-induced H2S decomposition with an aid of a semiconductor catalyst was tentatively proposed.
UR - http://www.scopus.com/inward/record.url?scp=84886716700&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84886716700&partnerID=8YFLogxK
U2 - 10.1016/j.ijhydene.2013.09.008
DO - 10.1016/j.ijhydene.2013.09.008
M3 - Article
AN - SCOPUS:84886716700
SN - 0360-3199
VL - 38
SP - 14415
EP - 14423
JO - International Journal of Hydrogen Energy
JF - International Journal of Hydrogen Energy
IS - 34
ER -