Hydrothermal liquefaction of a microalga with heterogeneous catalysts

Peigao Duan, Phillip E. Savage

Research output: Contribution to journalArticlepeer-review

516 Scopus citations

Abstract

We produced crude bio-oils from the microalga Nannochloropsis sp. via reactions in liquid water at 350 °C in the presence of six different heterogeneous catalysts (Pd/C, Pt/C, Ru/C, Ni/SiO2-Al 2O3, CoMo/γ-Al2O3 (sulfided), and zeolite) under inert (helium) and high-pressure reducing (hydrogen) conditions. To our knowledge, this is the first application of common hydrocarbon processing catalysts to microalgae liquefaction in water. In the absence of added H2, all of the catalysts tested produced higher yields of crude bio-oil from the liquefaction of Nannochloropsis sp., but the elemental compositions and heating values of the crude oil (about 38 MJ/kg) were largely insensitive to the catalyst used. The gaseous products were mainly H2, CO2, and CH4, with lesser amounts of C 2H4 and C2H6. The Ru and Ni catalysts produced the highest methane yields. Only the zeolite catalyst produced significant amounts of N2. Typical H/C and O/C atomic ratios for the crude bio-oil are 1.7 and 0.09, respectively. In the presence of high-pressure H2, the crude bio-oil yield and heating value were largely insensitive to the presence or identity of the catalyst. The presence of either the hydrogen or the higher pressure in the reaction system did suppress the formation of gas, however. The total gas yield was always lower in H 2 than it was in analogous experiments without H2 and at lower pressure. In both the presence and absence of H2, the supported Ni catalyst produced a crude bio-oil with a sulfur content below the detection limits. This apparent desulfurization activity for the Ni catalyst was unique to this material.

Original languageEnglish (US)
Pages (from-to)52-61
Number of pages10
JournalIndustrial and Engineering Chemistry Research
Volume50
Issue number1
DOIs
StatePublished - Jan 5 2011

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General Chemical Engineering
  • Industrial and Manufacturing Engineering

Fingerprint

Dive into the research topics of 'Hydrothermal liquefaction of a microalga with heterogeneous catalysts'. Together they form a unique fingerprint.

Cite this