TY - JOUR
T1 - Hysteretic phase transition sequence in 0.67Pb(M g1/3 N b2/3) O3-0.33PbTi O3 single crystal driven by electric field and temperature
AU - Zheng, Limei
AU - Lu, Xiaoyan
AU - Shang, Hengshan
AU - Xi, Zengzhe
AU - Wang, Ruixue
AU - Wang, Junjun
AU - Zheng, Peng
AU - Cao, Wenwu
N1 - Publisher Copyright:
© 2015 American Physical Society.
PY - 2015/5/8
Y1 - 2015/5/8
N2 - Domain pattern variations with temperature were studied by polarizing light microscopy for the morphotropic phase boundary composition 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 (PMN-0.33PT) single crystal. At room temperature, the monoclinic MA phase is the dominant phase in the unpoled crystal, which coexists with a small fraction of the tetragonal (T) phase. The orientation of spontaneous polarization was calculated to be ∼4.8? away from the pseudocubic (111)C in the {001}C plane family. Under an electric field of 6 kV/cm along [011]C, a single domain orthorhombic (O) phase was induced but partially switched back to MA a few hours after the removal of the E field. It was found that the temperature induced phase transition sequence of the [011]C poled PMN-0.33PT single crystal is strongly hysteretic. On heating, the phase transition sequence is as follows: coexistence of O phase and MA→rhombohedral→monoclinicMC→cubic(C). On cooling, the phase transition sequence is given by C→T→MA. The complete set of dielectric, piezoelectric, and elastic constants for the [011]C poled PMN-0.33PT single crystal was measured, which showed the strong feature of the single domain O phase with high shear (d15=2321pC/N,d24=1941pC/N) and low longitudinal piezoelectric coefficients (d33=165pC/N).
AB - Domain pattern variations with temperature were studied by polarizing light microscopy for the morphotropic phase boundary composition 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 (PMN-0.33PT) single crystal. At room temperature, the monoclinic MA phase is the dominant phase in the unpoled crystal, which coexists with a small fraction of the tetragonal (T) phase. The orientation of spontaneous polarization was calculated to be ∼4.8? away from the pseudocubic (111)C in the {001}C plane family. Under an electric field of 6 kV/cm along [011]C, a single domain orthorhombic (O) phase was induced but partially switched back to MA a few hours after the removal of the E field. It was found that the temperature induced phase transition sequence of the [011]C poled PMN-0.33PT single crystal is strongly hysteretic. On heating, the phase transition sequence is as follows: coexistence of O phase and MA→rhombohedral→monoclinicMC→cubic(C). On cooling, the phase transition sequence is given by C→T→MA. The complete set of dielectric, piezoelectric, and elastic constants for the [011]C poled PMN-0.33PT single crystal was measured, which showed the strong feature of the single domain O phase with high shear (d15=2321pC/N,d24=1941pC/N) and low longitudinal piezoelectric coefficients (d33=165pC/N).
UR - http://www.scopus.com/inward/record.url?scp=84929587568&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84929587568&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.91.184105
DO - 10.1103/PhysRevB.91.184105
M3 - Article
AN - SCOPUS:84929587568
SN - 1098-0121
VL - 91
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
IS - 18
M1 - 184105
ER -