TY - JOUR
T1 - Identification of late blight resistance quantitative trait loci in Solanum pimpinellifolium accession PI 270441
AU - Sullenberger, Matthew T.
AU - Jia, Mengyuan
AU - Gao, Sihui
AU - Ashrafi, Hamid
AU - Foolad, Majid R.
N1 - Publisher Copyright:
© 2022 The Authors. The Plant Genome published by Wiley Periodicals LLC on behalf of Crop Science Society of America.
PY - 2022/12
Y1 - 2022/12
N2 - Late blight (LB), caused by the oomycete Phytophthora infestans, is one of the most destructive diseases of the cultivated tomato (Solanum lycopersicum L.) and potato (Solanum tuberosum L.) worldwide. Genetic changes in the pathogen have resulted in the emergence of new genotypes, overcoming formerly effective fungicides or host resistance genes. We previously reported the identification of a LB-resistant accession (PI 270441) of the wild tomato species S. pimpinellifolium L. and the high heritability of its resistance. In the present study, an F2 population (n = 1,209), derived from a cross between PI 270441 and a LB-susceptible tomato breeding line (Fla. 8059), was screened for response to LB infection. Extreme resistant (n = 44) and susceptible (n = 39) F2 individuals were selected and used in a trait-based marker analysis (TBA; a.k.a selective genotyping) to identify and map quantitative trait loci (QTLs) conferring LB resistance. Reduced representation libraries (RRLs) of Fla. 8059 and PI 270441 were constructed, sequenced, and mapped to the tomato genome. A total of 13,054 single-nucleotide polymorphisms (SNPs) were identified, of which, 200 were used to construct a genetic linkage map and locate QTLs. Four LB resistance QTLs were identified on chromosomes 1, 10, and 11 of PI 270441. The markers associated with these QTLs can be used to transfer LB resistance from PI 270441 into new tomato cultivars and to develop near-isogenic lines for fine mapping of the QTL.
AB - Late blight (LB), caused by the oomycete Phytophthora infestans, is one of the most destructive diseases of the cultivated tomato (Solanum lycopersicum L.) and potato (Solanum tuberosum L.) worldwide. Genetic changes in the pathogen have resulted in the emergence of new genotypes, overcoming formerly effective fungicides or host resistance genes. We previously reported the identification of a LB-resistant accession (PI 270441) of the wild tomato species S. pimpinellifolium L. and the high heritability of its resistance. In the present study, an F2 population (n = 1,209), derived from a cross between PI 270441 and a LB-susceptible tomato breeding line (Fla. 8059), was screened for response to LB infection. Extreme resistant (n = 44) and susceptible (n = 39) F2 individuals were selected and used in a trait-based marker analysis (TBA; a.k.a selective genotyping) to identify and map quantitative trait loci (QTLs) conferring LB resistance. Reduced representation libraries (RRLs) of Fla. 8059 and PI 270441 were constructed, sequenced, and mapped to the tomato genome. A total of 13,054 single-nucleotide polymorphisms (SNPs) were identified, of which, 200 were used to construct a genetic linkage map and locate QTLs. Four LB resistance QTLs were identified on chromosomes 1, 10, and 11 of PI 270441. The markers associated with these QTLs can be used to transfer LB resistance from PI 270441 into new tomato cultivars and to develop near-isogenic lines for fine mapping of the QTL.
UR - http://www.scopus.com/inward/record.url?scp=85135848882&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85135848882&partnerID=8YFLogxK
U2 - 10.1002/tpg2.20251
DO - 10.1002/tpg2.20251
M3 - Article
C2 - 35962567
AN - SCOPUS:85135848882
SN - 1940-3372
VL - 15
JO - Plant Genome
JF - Plant Genome
IS - 4
M1 - e20251
ER -