Identification of Mutator insertional mutants of starch-branching enzyme 1 (sbe1) in Zea mays L.

Susan L. Blauth, Kyung Nam Kim, Jeffery Klucinec, Jack C. Shannon, Donald Thompson, Mark Guiltinan

Research output: Contribution to journalArticlepeer-review

117 Scopus citations


Starch-branching enzymes (SBE) alter starch structure by breaking an α-1,4 linkage and attaching the reducing end of the new chain to a glucan chain by an α 1,6 bond. In maize, three isoforms of SBE have been identified. In order to examine the function of the SBEI isoform, a reverse-genetics PCR-based screen was used to identify a mutant line segregating for a Mutator transposon within Sbe1. Compared to wild-type controls, Sbe1 transcripts accumulate at extremely low levels in leaves of the homozygous mutant. Antibodies failed to detect SBEI in leaf tissue of mutants or wild-type controls. In contrast, the level of SBEI in endosperm is undetectable in homozygous mutants while easily detected in wild-type controls. Starches extracted from mutant leaves and endosperm have structures indistinguishable from starches of wild-type controls as determined by size-exclusion chromatography (SEC) of intact starch and high-performance SEC of debranched starch. To investigate the possibility of compensation for the lack of SBEI by expression of the homologous sequence reported by Kim et al. (1998), a genomic fragment (Sbe1b) of this sequence was cloned. Northern hybridizations of mutant leaf, root, tassel, endosperm and embryo tissues with non-specific Sbe1b probes failed to reveal expression of the homologous sequence. These results suggest that the homologous sequence is not compensating for a lack of SBEI in sbe1::Mu mutants. Further study of this sbe1 mutation in the presence of other genetic mutations may help to understand the role of SBEI in determining starch structure in leaves and endosperm.

Original languageEnglish (US)
Pages (from-to)287-297
Number of pages11
JournalPlant molecular biology
Issue number3
StatePublished - 2002

All Science Journal Classification (ASJC) codes

  • Agronomy and Crop Science
  • Genetics
  • Plant Science


Dive into the research topics of 'Identification of Mutator insertional mutants of starch-branching enzyme 1 (sbe1) in Zea mays L.'. Together they form a unique fingerprint.

Cite this