Identification of optimal measurement sets for complete flux elucidation in metabolic flux analysis experiments

Research output: Contribution to journalArticlepeer-review

36 Scopus citations

Abstract

Metabolic flux analysis (MFA) methods use external flux and isotopic measurements to quantify the magnitude of metabolic flows in metabolic networks. A key question in this analysis is choosing a set of measurements that is capable of yielding a unique flux distribution (identifiability). In this article, we introduce an optimization-based framework that uses incidence structure analysis to determine the smallest (or most cost-effective) set of measurements leading to complete flux elucidation. This approach relies on an integer linear programming formulation OptMeas that allows for the measurement of external fluxes and the complete (or partial) enumeration of the isotope forms of metabolites without requiring any of these to be chosen in advance. We subsequently query and refine the measurement sets suggested by OptMeas for identifiability and optimality. OptMeas is first tested on small to medium-size demonstration examples. It is subsequently applied to a large-scale E. coli isotopomer mapping model with more than 17,000 isotopomers. A number of additional measurements are identified leading to maximum flux elucidation in an amorphadiene producing E. coli strain.

Original languageEnglish (US)
Pages (from-to)1039-1049
Number of pages11
JournalBiotechnology and bioengineering
Volume100
Issue number6
DOIs
StatePublished - Aug 15 2008

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Bioengineering
  • Applied Microbiology and Biotechnology

Fingerprint

Dive into the research topics of 'Identification of optimal measurement sets for complete flux elucidation in metabolic flux analysis experiments'. Together they form a unique fingerprint.

Cite this