Identification of somatic structural variants in solid tumors by optical genome mapping

David Y. Goldrich, Brandon Labarge, Scott Chartrand, Lijun Zhang, Henry B. Sadowski, Yang Zhang, Khoa Pham, Hannah Way, Chi Yu Jill Lai, Andy Wing Chun Pang, Benjamin Clifford, Alex R. Hastie, Mark Oldakowski, David Goldenberg, James R. Broach

Research output: Contribution to journalArticlepeer-review

19 Scopus citations

Abstract

Genomic structural variants comprise a significant fraction of somatic mutations driving cancer onset and progression. However, such variants are not readily revealed by standard next-generation sequencing. Optical genome mapping (OGM) surpasses short-read sequencing in detecting large (>500 bp) and complex structural variants (SVs) but requires isolation of ultra-high-molecular-weight DNA from the tissue of interest. We have successfully applied a protocol involving a paramagnetic nanobind disc to a wide range of solid tumors. Using as little as 6.5 mg of input tumor tissue, we show successful extraction of high-molecular-weight genomic DNA that provides a high genomic map rate and effective coverage by optical mapping. We demonstrate the system’s utility in identifying somatic SVs affecting functional and cancer-related genes for each sample. Duplicate/triplicate analysis of select samples shows intra-sample reliability but also intra-sample heterogeneity. We also demonstrate that simply filtering SVs based on a GRCh38 human control database provides high positive and negative predictive values for true somatic variants. Our results indicate that the solid tissue DNA extraction protocol, OGM and SV analysis can be applied to a wide variety of solid tumors to capture SVs across the entire genome with functional importance in cancer prognosis and treatment.

Original languageEnglish (US)
Article number142
Pages (from-to)1-21
Number of pages21
JournalJournal of Personalized Medicine
Volume11
Issue number2
DOIs
StatePublished - Mar 2021

All Science Journal Classification (ASJC) codes

  • Medicine (miscellaneous)

Fingerprint

Dive into the research topics of 'Identification of somatic structural variants in solid tumors by optical genome mapping'. Together they form a unique fingerprint.

Cite this