Identifying cache-based side channels through secret-augmented abstract interpretation

Shuai Wang, Yuyan Bao, Xiao Liu, Pei Wang, Danfeng Zhang, Dinghao Wu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

31 Scopus citations


Cache-based side channels enable a dedicated attacker to reveal program secrets by measuring the cache access patterns. Practical attacks have been shown against real-world crypto algorithm implementations such as RSA, AES, and ElGamal. By far, identifying information leaks due to cache-based side channels, either in a static or dynamic manner, remains a challenge: the existing approaches fail to offer high precision, full coverage, and good scalability simultaneously, thus impeding their practical use in real-world scenarios. In this paper, we propose a novel static analysis method on binaries to detect cache-based side channels. We use abstract interpretation to reason on program states with respect to abstract values at each program point. To make such abstract interpretation scalable to real-world cryptosystems while offering high precision and full coverage, we propose a novel abstract domain called the Secret-Augmented Symbolic domain (SAS). SAS tracks program secrets and dependencies on them for precision, while it tracks only coarse-grained public information for scalability. We have implemented the proposed technique into a practical tool named CacheS and evaluated it on the implementations of widely-used cryptographic algorithms in real-world crypto libraries, including Libgcrypt, OpenSSL, and mbedTLS. CacheS successfully confirmed a total of 154 information leaks reported by previous research and 54 leaks that were previously unknown. We have reported our findings to the developers. And they confirmed that many of those unknown information leaks do lead to potential side channels.

Original languageEnglish (US)
Title of host publicationProceedings of the 28th USENIX Security Symposium
PublisherUSENIX Association
Number of pages18
ISBN (Electronic)9781939133069
StatePublished - Jan 1 2019
Event28th USENIX Security Symposium - Santa Clara, United States
Duration: Aug 14 2019Aug 16 2019

Publication series

NameProceedings of the 28th USENIX Security Symposium


Conference28th USENIX Security Symposium
Country/TerritoryUnited States
CitySanta Clara

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems
  • Safety, Risk, Reliability and Quality


Dive into the research topics of 'Identifying cache-based side channels through secret-augmented abstract interpretation'. Together they form a unique fingerprint.

Cite this