Identifying the provision of choices in privacy policy text

Kanthashree Mysore Sathyendra, Shomir Wilson, Florian Schaub, Sebastian Zimmeck, Norman Sadeh

Research output: Chapter in Book/Report/Conference proceedingConference contribution

77 Scopus citations

Abstract

Websites’ and mobile apps’ privacy policies, written in natural language, tend to be long and difficult to understand. Information privacy revolves around the fundamental principle of notice and choice, namely the idea that users should be able to make informed decisions about what information about them can be collected and how it can be used. Internet users want control over their privacy, but their choices are often hidden in long and convoluted privacy policy documents. Moreover, little (if any) prior work has been done to detect the provision of choices in text. We address this challenge of enabling user choice by automatically identifying and extracting pertinent choice language in privacy policies. In particular, we present a two-stage architecture of classification models to identify opt-out choices in privacy policy text, labelling common varieties of choices with a mean F1 score of 0.735. Our techniques enable the creation of systems to help Internet users to learn about their choices, thereby effectuating notice and choice and improving Internet privacy.

Original languageEnglish (US)
Title of host publicationEMNLP 2017 - Conference on Empirical Methods in Natural Language Processing, Proceedings
PublisherAssociation for Computational Linguistics (ACL)
Pages2774-2779
Number of pages6
ISBN (Electronic)9781945626838
StatePublished - 2017
Event2017 Conference on Empirical Methods in Natural Language Processing, EMNLP 2017 - Copenhagen, Denmark
Duration: Sep 9 2017Sep 11 2017

Publication series

NameEMNLP 2017 - Conference on Empirical Methods in Natural Language Processing, Proceedings

Conference

Conference2017 Conference on Empirical Methods in Natural Language Processing, EMNLP 2017
Country/TerritoryDenmark
CityCopenhagen
Period9/9/179/11/17

All Science Journal Classification (ASJC) codes

  • Computer Science Applications
  • Information Systems
  • Computational Theory and Mathematics

Fingerprint

Dive into the research topics of 'Identifying the provision of choices in privacy policy text'. Together they form a unique fingerprint.

Cite this