Summary: A key to understanding RNA function is to uncover its complex 3D structure. Experimental methods used for determining RNA 3D structures are technologically challenging and laborious, which makes the development of computational prediction methods of substantial interest. Previously, we developed the iFoldRNA server that allows accurate prediction of short (<50∈nt) tertiary RNA structures starting from primary sequences. Here, we present a new version of the iFoldRNA server that permits the prediction of tertiary structure of RNAs as long as a few hundred nucleotides. This substantial increase in the server capacity is achieved by utilization of experimental information such as base-pairing and hydroxyl-radical probing. We demonstrate a significant benefit provided by integration of experimental data and computational methods.

Original languageEnglish (US)
Pages (from-to)2891-2893
Number of pages3
Issue number17
StatePublished - Feb 6 2015

All Science Journal Classification (ASJC) codes

  • Statistics and Probability
  • Biochemistry
  • Molecular Biology
  • Computer Science Applications
  • Computational Theory and Mathematics
  • Computational Mathematics


Dive into the research topics of 'iFoldRNA v2: Folding RNA with constraints'. Together they form a unique fingerprint.

Cite this