Abstract
Engineering atomic-scale defects is crucial for realizing wafer-scale, single-crystalline transition metal dichalcogenide monolayers for electronic devices. However, connecting atomic-scale defects to larger morphologies poses a significant challenge. Using electron microscopy and ReaxFF reactive force field-based molecular dynamics simulations, we provide insights into WS2 crystal growth mechanisms, providing a direct link between synthetic conditions and microstructure. Dark-field TEM imaging of coalesced monolayer WS2 films illuminates defect arrays that atomic-resolution STEM imaging identifies as translational grain boundaries. Electron diffraction and high-resolution imaging reveal that the films have nearly a single orientation with imperfectly stitched domains that tilt out-of-plane when released from the substrate. Imaging and ReaxFF simulations uncover two types of translational mismatch, and we discuss their origin related to relatively fast growth rates. Statistical analysis of >1300 facets demonstrates that microstructural features are constructed from nanometer-scale building blocks, describing the system across sub-Ångstrom to multimicrometer length scales.
Original language | English (US) |
---|---|
Pages (from-to) | 6487-6495 |
Number of pages | 9 |
Journal | Nano letters |
Volume | 21 |
Issue number | 15 |
DOIs | |
State | Published - Aug 11 2021 |
All Science Journal Classification (ASJC) codes
- Bioengineering
- General Chemistry
- General Materials Science
- Condensed Matter Physics
- Mechanical Engineering
Fingerprint
Dive into the research topics of 'Illuminating Invisible Grain Boundaries in Coalesced Single-Orientation WS2Monolayer Films'. Together they form a unique fingerprint.Equipment
-
MRI-MCL-TEM-FEI Titan3 G2
Stapleton, J. J. (Manager)
Materials Characterization LabEquipment/facility: Equipment