Abstract
Transmission electron microscopy can resolve the atomic structure of materials with 0.5 Å resolution. High-resolution transmission electron microscopy (HRTEM) of soft materials, however, is limited by beam damage. We characterized damage in a series of conjugated polymers comprising poly(3-hexylthiophene-2,5-diyl) (P3HT), poly(3-dodecylthiophene-2,5-diyl) (P3DDT), and poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3″'-di(2-octyldodecyl)-2,2′5′,2″5″,2″'-quaterthiophene-5,5″'-diyl)] (PffBT4T-2OD) by monitoring the decay of electron diffraction peaks as a function of dose rate, beam blanking, and temperature. We also measured the decay of low-loss electron energy-loss spectra as a function of dose rate. These damage experiments suggest that the dominant mechanism of beam damage in conjugated polymers is the diffusion of a reacting species generated from ionization, likely of side chains. Elucidating a mechanistic description of radiation effects leads to imaging protocols that can minimize damage, which enables the direct imaging of 3.6 Å π-πstacking in a solution-processed conjugated polymer (PffBT4T-2OD), improving state-of-the-art resolution of this class of materials by an order of magnitude.
| Original language | English (US) |
|---|---|
| Pages (from-to) | 8296-8302 |
| Number of pages | 7 |
| Journal | Macromolecules |
| Volume | 53 |
| Issue number | 19 |
| DOIs | |
| State | Published - Oct 13 2020 |
All Science Journal Classification (ASJC) codes
- Organic Chemistry
- Polymers and Plastics
- Inorganic Chemistry
- Materials Chemistry