Imaging quantum oscillations and millitesla pseudomagnetic fields in graphene

Haibiao Zhou, Nadav Auerbach, Matan Uzan, Yaozhang Zhou, Nasrin Banu, Weifeng Zhi, Martin E. Huber, Kenji Watanabe, Takashi Taniguchi, Yuri Myasoedov, Binghai Yan, Eli Zeldov

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

The exceptional control of the electronic energy bands in atomically thin quantum materials has led to the discovery of several emergent phenomena1. However, at present there is no versatile method for mapping the local band structure in advanced two-dimensional materials devices in which the active layer is commonly embedded in the insulating layers and metallic gates. Using a scanning superconducting quantum interference device, here we image the de Haas–van Alphen quantum oscillations in a model system, the Bernal-stacked trilayer graphene with dual gates, which shows several highly tunable bands2–4. By resolving thermodynamic quantum oscillations spanning more than 100 Landau levels in low magnetic fields, we reconstruct the band structure and its evolution with the displacement field with excellent precision and nanoscale spatial resolution. Moreover, by developing Landau-level interferometry, we show shear-strain-induced pseudomagnetic fields and map their spatial dependence. In contrast to artificially induced large strain, which leads to pseudomagnetic fields of hundreds of tesla5–7, we detect naturally occurring pseudomagnetic fields as low as 1 mT corresponding to graphene twisting by 1 millidegree, two orders of magnitude lower than the typical angle disorder in twisted bilayer graphene8–11. This ability to resolve the local band structure and strain at the nanoscale level enables the characterization and use of tunable band engineering in practical van der Waals devices.

Original languageEnglish (US)
Pages (from-to)275-281
Number of pages7
JournalNature
Volume624
Issue number7991
DOIs
StatePublished - Dec 14 2023

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'Imaging quantum oscillations and millitesla pseudomagnetic fields in graphene'. Together they form a unique fingerprint.

Cite this