TY - JOUR
T1 - Immunological detection of pregnancy
T2 - Evidence for systemic immune modulation during early pregnancy in ruminants
AU - Ott, Troy L.
N1 - Publisher Copyright:
© 2020 Elsevier Inc.
PY - 2020/7/1
Y1 - 2020/7/1
N2 - Mammalian pregnancy creates unique challenges for immune systems highly evolved to detect and eliminate invading pathogens. Recognition of the challenges created by gestating a semi-allogeneic fetus evolved from the discipline of transplantation biology and were informed by studies on the unique natural parabiosis that occurs when female calves are gestated with twin male fetuses. These pregnancies typically result in an intersex female termed a freemartin, which revealed insights into development of the male and female reproductive tracts. However, they also uncovered important clues on immune tolerance with wide-ranging implications to reproductive biology, transplantation biology and autoimmune disease. Many studies focused on identifying mechanisms through which the fetus evades maternal immune detection and elimination. These included studies characterizing immune interactions between the fetus and mother at the nourishing interface of the placenta and uterine endometrium. This immunological forbearance only occurs under high concentrations of circulating progesterone. Beyond the requirement for progesterone, there has been considerable progress towards understanding the effects of conceptus signals on maternal immune function. One common theme is that pregnancy induces a T helper 2 immune bias as shown in several mammalian species, including domestic ruminants. However, a growing body of evidence shows that the fetus not only evades, but also provokes immune responses locally in the uterus and in peripheral tissues. This is perhaps most dramatically illustrated by domestic ruminants where the conceptus secretes a unique interferon in the opening salvo of hormonal communication with the maternal immune system. The role of interferon tau in regulating expression of genes of the innate immune system in the uterus has been extensively studied. More recently, it was determined that these same genes are also induced in peripheral immune cells and other tissues throughout the body. In addition to interferon tau and progesterone, pregnancy associate glycoproteins and chaperonin 10 (aka Early Pregnancy Factor) are implicated in altering immune function both locally and systemically during pregnancy. While it is tempting to speculate that this activation of innate immunity is designed to counteract selective immunosuppression, knowledge of the importance of local and systemic immune activation to the success of pregnancy remains incomplete. This area remains fertile ground for developing better approaches to diagnose and treat infertility in domestic farm species and humans alike.
AB - Mammalian pregnancy creates unique challenges for immune systems highly evolved to detect and eliminate invading pathogens. Recognition of the challenges created by gestating a semi-allogeneic fetus evolved from the discipline of transplantation biology and were informed by studies on the unique natural parabiosis that occurs when female calves are gestated with twin male fetuses. These pregnancies typically result in an intersex female termed a freemartin, which revealed insights into development of the male and female reproductive tracts. However, they also uncovered important clues on immune tolerance with wide-ranging implications to reproductive biology, transplantation biology and autoimmune disease. Many studies focused on identifying mechanisms through which the fetus evades maternal immune detection and elimination. These included studies characterizing immune interactions between the fetus and mother at the nourishing interface of the placenta and uterine endometrium. This immunological forbearance only occurs under high concentrations of circulating progesterone. Beyond the requirement for progesterone, there has been considerable progress towards understanding the effects of conceptus signals on maternal immune function. One common theme is that pregnancy induces a T helper 2 immune bias as shown in several mammalian species, including domestic ruminants. However, a growing body of evidence shows that the fetus not only evades, but also provokes immune responses locally in the uterus and in peripheral tissues. This is perhaps most dramatically illustrated by domestic ruminants where the conceptus secretes a unique interferon in the opening salvo of hormonal communication with the maternal immune system. The role of interferon tau in regulating expression of genes of the innate immune system in the uterus has been extensively studied. More recently, it was determined that these same genes are also induced in peripheral immune cells and other tissues throughout the body. In addition to interferon tau and progesterone, pregnancy associate glycoproteins and chaperonin 10 (aka Early Pregnancy Factor) are implicated in altering immune function both locally and systemically during pregnancy. While it is tempting to speculate that this activation of innate immunity is designed to counteract selective immunosuppression, knowledge of the importance of local and systemic immune activation to the success of pregnancy remains incomplete. This area remains fertile ground for developing better approaches to diagnose and treat infertility in domestic farm species and humans alike.
UR - http://www.scopus.com/inward/record.url?scp=85083524709&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85083524709&partnerID=8YFLogxK
U2 - 10.1016/j.theriogenology.2020.04.010
DO - 10.1016/j.theriogenology.2020.04.010
M3 - Article
C2 - 32331860
AN - SCOPUS:85083524709
SN - 0093-691X
VL - 150
SP - 498
EP - 503
JO - Theriogenology
JF - Theriogenology
ER -