TY - JOUR
T1 - Impact of attenuation correction on the accuracy of FDG-PET in patients with abdominal tumors
T2 - A free-response ROC analysis
AU - Hustinx, Roland
AU - Dolin, Ron J.
AU - Benard, Fran�ois
AU - Bhatnagar, Anish
AU - Chakraborty, Dev
AU - Smith, Robin J.
AU - Jang, Sunyoung
AU - Alavi, Abass
N1 - Funding Information:
Acknowledgements. R.H. was supported in part by a NATO Research Fellowship and by a Research Grant from the “Fondation Médicale M.E. Horlait-Dapsens”. R.J.D. was supported by a SNM Student fellowship.
PY - 2000
Y1 - 2000
N2 - The aim of this study was to evaluate image quality and lesion detectability with and without attenuation correction in patients with abdominal tumors, using a free-response receiver operating characteristic (FROC) methodology. Thirty-four patients with various abdominal tumors were evaluated (11 men, 23 women, median age 48 years). Whole-body emission scans were performed 68 min (35-102 min) after intravenous injection of 4.3 MBq/kg fluorine-18 fluorodeoxyglucose (FDG). Images were reconstructed using the OS-EM algorithm and corrected for attenuation either using postinjection singles transmission (n=27) or by calculation and body outline (n=7). Total scan duration did not exceed 70 min. Studies were read independently by four observers unaware of any clinical data. The uncorrected (UC) images were systematically read before the attenuation-corrected (AC) images. All studies were given an image quality score ranging from 1 (unreadable) to 5 (excellent). Each focus of increased activity was then localized and given a probability of malignancy using a five-point scale. The average image quality score was similar for both UC and AC images. At the time of the positron emission tomography (PET) scans, 127 lesions (63 liver metastases, 9 retroperitoneal lesions, 50 peritoneal or bowel lesions, and 5 pancreatic carcinomas) were revealed by pathological or correlative studies. The areas under the FROC curves were consistently greater for AC images (range 0.8663-0.8867) than for UC images (range 0.7774 -0.8613). Overall, the difference between the AC images and the UC images was significant (P=0.019). In particular, correction for attenuation increased the sensitivity regardless of the location of the lesions. In conclusion, correction for attenuation significantly improves the diagnostic accuracy of FDG-PET for abdominal staging of neoplasms, without impairing the image quality.
AB - The aim of this study was to evaluate image quality and lesion detectability with and without attenuation correction in patients with abdominal tumors, using a free-response receiver operating characteristic (FROC) methodology. Thirty-four patients with various abdominal tumors were evaluated (11 men, 23 women, median age 48 years). Whole-body emission scans were performed 68 min (35-102 min) after intravenous injection of 4.3 MBq/kg fluorine-18 fluorodeoxyglucose (FDG). Images were reconstructed using the OS-EM algorithm and corrected for attenuation either using postinjection singles transmission (n=27) or by calculation and body outline (n=7). Total scan duration did not exceed 70 min. Studies were read independently by four observers unaware of any clinical data. The uncorrected (UC) images were systematically read before the attenuation-corrected (AC) images. All studies were given an image quality score ranging from 1 (unreadable) to 5 (excellent). Each focus of increased activity was then localized and given a probability of malignancy using a five-point scale. The average image quality score was similar for both UC and AC images. At the time of the positron emission tomography (PET) scans, 127 lesions (63 liver metastases, 9 retroperitoneal lesions, 50 peritoneal or bowel lesions, and 5 pancreatic carcinomas) were revealed by pathological or correlative studies. The areas under the FROC curves were consistently greater for AC images (range 0.8663-0.8867) than for UC images (range 0.7774 -0.8613). Overall, the difference between the AC images and the UC images was significant (P=0.019). In particular, correction for attenuation increased the sensitivity regardless of the location of the lesions. In conclusion, correction for attenuation significantly improves the diagnostic accuracy of FDG-PET for abdominal staging of neoplasms, without impairing the image quality.
UR - http://www.scopus.com/inward/record.url?scp=0033851808&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0033851808&partnerID=8YFLogxK
U2 - 10.1007/s002590000287
DO - 10.1007/s002590000287
M3 - Article
C2 - 11007519
AN - SCOPUS:0033851808
SN - 0340-6997
VL - 27
SP - 1365
EP - 1371
JO - European Journal of Nuclear Medicine
JF - European Journal of Nuclear Medicine
IS - 9
ER -