Impact of carbon nanotube defects on fracture mechanisms in ceramic nanocomposites

Yingchao Yang, Cristina Ramirez, Xing Wang, Zhixing Guo, Anton Tokranov, Ruiqi Zhao, Izabela Szlufarska, Jun Lou, Brian W. Sheldon

Research output: Contribution to journalArticlepeer-review

37 Scopus citations

Abstract

Carbon nanotubes (CNTs) can improve the fracture toughness of ceramic composites. It is widely believed that defects in the CNTs will alter key properties that ultimately dictate composite toughening. However, to date there have been no studies that directly correlate these specific properties to controlled defect levels in CNTs. This type of investigation is presented here, using ceramic nanocomposites with a polymer derived ceramic (PDC) matrix, reinforced with multiwalled CNTs. This work includes basic fracture measurements on full composite films, combined with careful testing of individual CNTs embedded in the same PDC matrix. The defect levels in these CNTs were controlled with high energy carbon ions. By using this approach, it was possible to directly correlate defect levels with the interfacial shear strength (IFSS) of the CNT/PDC interface, the CNT fracture strengths, and the pull-out lengths observed after fracture of the full composites. The radiation induced defects led to substantial increases in the IFSS, and only a marginal decrease is observed in the measured fracture strength. Based on this, the shorter pull-out lengths that occurred with higher defect levels were primarily attributed to stronger bonding at the CNT/PDC interface.

Original languageEnglish (US)
Pages (from-to)402-408
Number of pages7
JournalCarbon
Volume115
DOIs
StatePublished - May 1 2017

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General Materials Science

Fingerprint

Dive into the research topics of 'Impact of carbon nanotube defects on fracture mechanisms in ceramic nanocomposites'. Together they form a unique fingerprint.

Cite this