TY - JOUR
T1 - Impact of proestrous milieu on expression of orexin receptors and preproorexin in rat hypothalamus and hypophysis
T2 - Actions of Cetrorelix and Nembutal
AU - Silveyra, Patricia
AU - Catalano, Paolo N.
AU - Lux-Lantos, Victoria
AU - Libertun, Carlos
PY - 2007/3
Y1 - 2007/3
N2 - Orexins and their receptors OX1 and OX2 regulate energy balance and the sleep-wake cycle. We studied the expression of prepro-orexin (PPO), OX1, and OX2 in brain and pituitary under the influence of the hormonal status in adult rats. Primarily, PPO, OX1, and OX2 expression was determined in Sprague-Dawley female cycling rats during proestrus and in males. Animals were killed at 2-h intervals. Anterior (AH) and mediobasal (MBH) hypothalamus, anterior pituitary (P), and frontoparietal cortex (CC) were homogenized in TRIzol, and mRNAs were obtained for screening of PPO, OX1, OX2 expression by semiquantitative RT-PCR. Main findings were confirmed and extended to all days of the cycle by quantitative real-time RT-PCR. Hormones and food consumption were determined. Finally, OX1, OX2, and PPO were measured by real-time RT-PCR in tissues collected at 1900 of proestrus after treatments at 1400 with ovulation-blocking agents Cetrorelix or pentobarbital. OX 1 and OX2 expression increased at least threefold in AH, MBH, and P, but not in CC, between 1700 and 2300 of proestrus, without variations in estrus, diestrus, or in males. PPO in AH and MBH showed a fourfold or higher increase only during proestrus afternoon. Cetrorelix or pentobarbital prevented increases of OX1 and OX2 only in the pituitary and blunted gonadotropin surges, but left OX1, OX2, and PPO brain expression unchanged. Reproduction, energy balance, and sleep-wake cycle are integrated. Here, we demonstrate that, in the physiological neuroendocrine condition leading to ovulation, information to the orexinergic system acts in hypothalamus and pituitary by different mechanisms.
AB - Orexins and their receptors OX1 and OX2 regulate energy balance and the sleep-wake cycle. We studied the expression of prepro-orexin (PPO), OX1, and OX2 in brain and pituitary under the influence of the hormonal status in adult rats. Primarily, PPO, OX1, and OX2 expression was determined in Sprague-Dawley female cycling rats during proestrus and in males. Animals were killed at 2-h intervals. Anterior (AH) and mediobasal (MBH) hypothalamus, anterior pituitary (P), and frontoparietal cortex (CC) were homogenized in TRIzol, and mRNAs were obtained for screening of PPO, OX1, OX2 expression by semiquantitative RT-PCR. Main findings were confirmed and extended to all days of the cycle by quantitative real-time RT-PCR. Hormones and food consumption were determined. Finally, OX1, OX2, and PPO were measured by real-time RT-PCR in tissues collected at 1900 of proestrus after treatments at 1400 with ovulation-blocking agents Cetrorelix or pentobarbital. OX 1 and OX2 expression increased at least threefold in AH, MBH, and P, but not in CC, between 1700 and 2300 of proestrus, without variations in estrus, diestrus, or in males. PPO in AH and MBH showed a fourfold or higher increase only during proestrus afternoon. Cetrorelix or pentobarbital prevented increases of OX1 and OX2 only in the pituitary and blunted gonadotropin surges, but left OX1, OX2, and PPO brain expression unchanged. Reproduction, energy balance, and sleep-wake cycle are integrated. Here, we demonstrate that, in the physiological neuroendocrine condition leading to ovulation, information to the orexinergic system acts in hypothalamus and pituitary by different mechanisms.
UR - http://www.scopus.com/inward/record.url?scp=33947129125&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33947129125&partnerID=8YFLogxK
U2 - 10.1152/ajpendo.00467.2006
DO - 10.1152/ajpendo.00467.2006
M3 - Article
C2 - 17122088
AN - SCOPUS:33947129125
SN - 0193-1849
VL - 292
SP - E820-E828
JO - American Journal of Physiology - Endocrinology and Metabolism
JF - American Journal of Physiology - Endocrinology and Metabolism
IS - 3
ER -