Abstract
In situ synthesis of Ag nanoparticles in polyvinylidene fluoride (PVDF) was investigated using different stabilizers such as 3-aminopropyltrimethoxysilane (APS) and 1-dodecanethiol (thiol). Although PVDF is a matrix, it also functions as a stabilizer. Results of UV-vis spectroscopy showed that when APS or PVDF was used, Ag nanoparticles were formed. Yet no formation occurred when thiol was used due to the complexation of Ag+ ions by thiol. Polar groups on stabilizers has an important effect on complexation process. APS, a nitrogen-based ligand, has hard base character inhibiting the complexation between Ag+ and APS. Consequently, Ag+ ions are reduced to Ag nanoparticles in N,N dimethyl formamide (DMF), which acts as a solvent and reducing agent. Transition Electron Microscopy (TEM) image showed a uniform distribution of spherical Ag nanoparticles in PVDF matrix in the presence of APS. The electrical properties of flexible nano-metal polymer were tested and the highest improvements in breakdown strength and energy density of 33 and 58 %, respectively were measured with 0.05 wt.% Ag content and APS as a stabilizer.
Original language | English (US) |
---|---|
Pages (from-to) | 2103-2108 |
Number of pages | 6 |
Journal | MRS Advances |
Volume | 4 |
Issue number | 38-39 |
DOIs | |
State | Published - 2019 |
All Science Journal Classification (ASJC) codes
- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering
- General Materials Science