Impacts and mechanisms of CO2 narcosis in bumble bees: narcosis depends on dose, caste and mating status and is not induced by anoxia

Anna Cressman, Etya Amsalem

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Carbon dioxide (CO2) is commonly used to immobilize insects and to induce reproduction in bees. However, despite its wide use and potential off-target impacts, its underlying mechanisms are not fully understood. Here, we used Bombus impatiens to examine whether CO2 impacts are mediated by anoxia and whether these mechanisms differ between female castes or following mating in queens. We examined the behavior, physiology and gene expression of workers, mated queens and virgin queens following exposure to anoxia, hypoxia, full and partial hypercapnia, and controls. Hypercapnia and anoxia caused immobilization, but only hypercapnia resulted in behavioral, physiological and molecular impacts in bees. Recovery from hypercapnia resulted in increased abdominal contractions and took longer in queens. Additionally, hypercapnia activated the ovaries of queens, but inhibited those of workers in a dose-dependent manner and caused a depletion of fat-body lipids in both castes. All responses to hypercapnia were weaker following mating in queens. Analysis of gene expression related to hypoxia and hypercapnia supported the physiological findings in queens, demonstrating that the overall impacts of CO2, excluding virgin queen ovaries, were unique and were not induced by anoxia. This study contributes to our understanding of the impacts and the mechanistic basis of CO2 narcosis in insects and its impacts on bee physiology.

Original languageEnglish (US)
Article numberjeb244746
JournalJournal of Experimental Biology
Volume226
Issue number1
DOIs
StatePublished - Jan 2023

All Science Journal Classification (ASJC) codes

  • Ecology, Evolution, Behavior and Systematics
  • Physiology
  • Aquatic Science
  • Animal Science and Zoology
  • Molecular Biology
  • Insect Science

Fingerprint

Dive into the research topics of 'Impacts and mechanisms of CO2 narcosis in bumble bees: narcosis depends on dose, caste and mating status and is not induced by anoxia'. Together they form a unique fingerprint.

Cite this