Abstract
Free-vortex wake models are capable of providing an accurate and physically detailed representation of the main rotor wake for flight dynamics simulation. Recent advances in computing power and efficient algorithms have made it feasible to use free wakes for real-time simulation. The CHARM free-vortex wake model was integrated with the GENHEL flight dynamics simulation of the UH-60A helicopter. A high fidelity wake model was defined by increasing the spatial and temporal resolution of the wake until a converged response was observed, but this baseline model could not execute in real-time. A parametric study was performed to find the best combination of wake parameters to achieve real-time execution with minimal deviation from the baseline model in terms of the frequency and time responses in the pitch and roll axes. A real-time model was found and showed reasonable agreement with the baseline model as compared to a simple finite-state inflow model. A parallel implementation of the free wake model was also investigated. An increase in computational efficiency could be achieved using a distributed processing approach with asynchronous communications.
Original language | English (US) |
---|---|
Pages (from-to) | 93-107 |
Number of pages | 15 |
Journal | Journal of Aerospace Computing, Information and Communication |
Volume | 3 |
Issue number | 3 |
DOIs | |
State | Published - Mar 2006 |
All Science Journal Classification (ASJC) codes
- Aerospace Engineering
- Computer Science Applications
- Electrical and Electronic Engineering