Improved depolarization behavior and electric properties in (Bi0.5Na0.5)TiO3-based piezoelectric composites

Xingru Zhang, Guicheng Jiang, Danqing Liu, Bin Yang, Wenwu Cao

Research output: Contribution to journalArticlepeer-review

14 Scopus citations


(Bi0.5Na0.5)TiO3 (BNT) based ceramics have been restricted by the drawback of the low depolarization temperature Td and ferroelectric-to-relaxor transition temperature TF-R. Many works have confirmed conventional improving strategies like doping and forming solid solution are not efficient to solve the problem. To overcome this obstacle, we introduced semiconductor ZnO into 0.93(Bi0.5Na0.5)TiO3-0.07Ba(Ti0.945 Zr0.055)O3:xZnO matrix to prepare 0-3 type ceramic composites (abbreviated as BNT-BZT:xZnO). Energy disperse spectroscopy (EDS) result reveals that there are two distributions of Zn. Most of Zn2+ ions gather around the boundaries of BNT-BZT grains to form ZnO enrichment regions, and the others diffuse into the lattice. In consideration of the fact that the distribution of Na also appears to be separated, a new model on the Na migration is proposed to explain experimental results. Both the substitution of lower valent Zn2+ ions at B site and the migration of Na are benefit for the formation of oxygen vacancies. As a consequence, the coercive field Ec and mechanical quality factor Qm have been significantly promoted. In terms of depolarization behavior, the temperature-dependent P-E loops show a completely different polarization process after ZnO incorporation. A slower decay of the remnant polarization Pr indicates ferroelectric state is more stable in the composites. The influence of internal bias field on asymmetric P-E loop has been discussed. The experiments on thermally stimulated depolarization current (TSDC) and temperature-dependent dielectric permittivity demonstrate Td and TF-R increase about 17 °C and 19 °C, respectively. Our research confirms forming ZnO composites is an effective method to improve depolarization behavior, and BNT-BZT:xZnO composites should be an alternative for application in electromechanical devices.

Original languageEnglish (US)
Pages (from-to)660-668
Number of pages9
JournalJournal of Alloys and Compounds
StatePublished - Nov 15 2018

All Science Journal Classification (ASJC) codes

  • Mechanics of Materials
  • Mechanical Engineering
  • Metals and Alloys
  • Materials Chemistry


Dive into the research topics of 'Improved depolarization behavior and electric properties in (Bi0.5Na0.5)TiO3-based piezoelectric composites'. Together they form a unique fingerprint.

Cite this