TY - JOUR
T1 - Improved eco-friendly barrier materials based on crystalline nanocellulose/chitosan/carboxymethyl cellulose polyelectrolyte complexes
AU - Chi, Kai
AU - Catchmark, Jeffrey M.
N1 - Publisher Copyright:
© 2018 Elsevier Ltd
PY - 2018/7
Y1 - 2018/7
N2 - Sustainable, cost-effective and ecologically compatible materials derived from renewable natural resources have attracted a tremendous level of attention as replacements for a broad array of volume commercial materials based on petroleum-derived compounds. In the present study, we demonstrate ternary polysaccharide polyelectrolyte complex (PPC) materials consisting of crystalline nanocellulose (CNC), chitosan (CS) and carboxymethyl cellulose (CMC) produced via an immediate high-shear homogenization process. Ionically cross-linked CS and CMC behaved as the continuous matrix and CNC was incorporated as a nanoreinforcement. The developed PPC materials exhibited homogeneous, compact morphological features and enhanced mechanical and barrier properties, ascribed to the even distribution and good interfacial compatibility of CNC within the CS/CMC matrix. PPC films with 10 wt% CNC content showed tensile strength and Young's modulus of 60.6 MPa and 4.7 GPa, respectively, and water vapor transportation rate of 7982 g μm m−2 d−1. In addition, PPC composites containing <5 wt% CNC performed as an excellent barrier coating against liquid (grease, water and oil) penetration on the paperboard substrate. These results indicate the potential of PPC materials as eco-friendly, bio-based barrier films or coatings for packaging applications.
AB - Sustainable, cost-effective and ecologically compatible materials derived from renewable natural resources have attracted a tremendous level of attention as replacements for a broad array of volume commercial materials based on petroleum-derived compounds. In the present study, we demonstrate ternary polysaccharide polyelectrolyte complex (PPC) materials consisting of crystalline nanocellulose (CNC), chitosan (CS) and carboxymethyl cellulose (CMC) produced via an immediate high-shear homogenization process. Ionically cross-linked CS and CMC behaved as the continuous matrix and CNC was incorporated as a nanoreinforcement. The developed PPC materials exhibited homogeneous, compact morphological features and enhanced mechanical and barrier properties, ascribed to the even distribution and good interfacial compatibility of CNC within the CS/CMC matrix. PPC films with 10 wt% CNC content showed tensile strength and Young's modulus of 60.6 MPa and 4.7 GPa, respectively, and water vapor transportation rate of 7982 g μm m−2 d−1. In addition, PPC composites containing <5 wt% CNC performed as an excellent barrier coating against liquid (grease, water and oil) penetration on the paperboard substrate. These results indicate the potential of PPC materials as eco-friendly, bio-based barrier films or coatings for packaging applications.
UR - http://www.scopus.com/inward/record.url?scp=85044398917&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85044398917&partnerID=8YFLogxK
U2 - 10.1016/j.foodhyd.2018.02.003
DO - 10.1016/j.foodhyd.2018.02.003
M3 - Article
AN - SCOPUS:85044398917
SN - 0268-005X
VL - 80
SP - 195
EP - 205
JO - Food Hydrocolloids
JF - Food Hydrocolloids
ER -