IMPROVED SAMPLE COMPLEXITY FOR REWARD-FREE REINFORCEMENT LEARNING UNDER LOW-RANK MDPS

Yuan Cheng, Ruiquan Huang, Jing Yang, Yingbin Liang

Research output: Contribution to conferencePaperpeer-review

10 Scopus citations

Abstract

In reward-free reinforcement learning (RL), an agent explores the environment first without any reward information, in order to achieve certain learning goals afterwards for any given reward. In this paper we focus on reward-free RL under low-rank MDP models, in which both the representation and linear weight vectors are unknown. Although various algorithms have been proposed for reward-free low-rank MDPs, the corresponding sample complexity is still far from being satisfactory. In this work, we first provide the first known sample complexity lower bound that holds for any algorithm under low-rank MDPs. This lower bound implies it is strictly harder to find a near-optimal policy under low-rank MDPs than under linear MDPs. We then propose a novel model-based algorithm, coined RAFFLE, and show it can both find an ϵ-optimal policy and achieve an ϵ-accurate system identification via reward-free exploration, with a sample complexity significantly improving the previous results. Such a sample complexity matches our lower bound in the dependence on ϵ, as well as on K in the large d regime, where d and K respectively denote the representation dimension and action space cardinality. Finally, we provide a planning algorithm (without further interaction with true environment) for RAFFLE to learn a near-accurate representation, which is the first known representation learning guarantee under the same setting.

Original languageEnglish (US)
StatePublished - 2023
Event11th International Conference on Learning Representations, ICLR 2023 - Kigali, Rwanda
Duration: May 1 2023May 5 2023

Conference

Conference11th International Conference on Learning Representations, ICLR 2023
Country/TerritoryRwanda
CityKigali
Period5/1/235/5/23

All Science Journal Classification (ASJC) codes

  • Language and Linguistics
  • Computer Science Applications
  • Education
  • Linguistics and Language

Fingerprint

Dive into the research topics of 'IMPROVED SAMPLE COMPLEXITY FOR REWARD-FREE REINFORCEMENT LEARNING UNDER LOW-RANK MDPS'. Together they form a unique fingerprint.

Cite this