TY - GEN
T1 - Improving energy efficiency of multi-threaded applications using heterogeneous CMOS-TFET multicores
AU - Swaminathan, Karthik
AU - Kultursay, Emre
AU - Saripalli, Vinay
AU - Narayanan, Vijaykrishnan
AU - Kandemir, Mahmut
AU - Datta, Suman
PY - 2011
Y1 - 2011
N2 - Energy-Delay-Product-aware DVFS is a widely-used technique that improves energy efficiency by dynamically adjusting the frequencies of cores. Further, for multithreaded applications, barrier-aware DVFS is a method that can dynamically tune the frequencies of cores to reduce barrier stall times and achieve higher energy efficiency. In both forms of DVFS, frequencies of cores are reduced from the maximum value to achieve better energy efficiency. TFET devices operate at energy efficiencies that cannot be achieved by CMOS devices. This advantage of TFET devices can be exploited in the context of multicore processors by replacing some of the CMOS cores with energy efficient TFET alternatives. However, the energy benefits of TFET devices are observed at relatively lower voltages, which results in a degradation in performance due to executing at lower frequencies. Although applications cannot be limited to run always at such lower frequencies, it can be significantly beneficial from an energy efficiency perspective to make use of energy efficient TFET cores during the times applications spend at these frequencies. In this paper, we show that due to EDP-aware DVFS and barrier-aware DVFS, multithreaded applications run for a significant portion of their execution time at frequencies at which TFET cores are more energy efficient. We further show that, at those frequencies, dynamically migrating threads to TFET cores can achieve average leakage and dynamic energy savings of 30% and 17%, respectively, with a performance degradation of less than 1%.
AB - Energy-Delay-Product-aware DVFS is a widely-used technique that improves energy efficiency by dynamically adjusting the frequencies of cores. Further, for multithreaded applications, barrier-aware DVFS is a method that can dynamically tune the frequencies of cores to reduce barrier stall times and achieve higher energy efficiency. In both forms of DVFS, frequencies of cores are reduced from the maximum value to achieve better energy efficiency. TFET devices operate at energy efficiencies that cannot be achieved by CMOS devices. This advantage of TFET devices can be exploited in the context of multicore processors by replacing some of the CMOS cores with energy efficient TFET alternatives. However, the energy benefits of TFET devices are observed at relatively lower voltages, which results in a degradation in performance due to executing at lower frequencies. Although applications cannot be limited to run always at such lower frequencies, it can be significantly beneficial from an energy efficiency perspective to make use of energy efficient TFET cores during the times applications spend at these frequencies. In this paper, we show that due to EDP-aware DVFS and barrier-aware DVFS, multithreaded applications run for a significant portion of their execution time at frequencies at which TFET cores are more energy efficient. We further show that, at those frequencies, dynamically migrating threads to TFET cores can achieve average leakage and dynamic energy savings of 30% and 17%, respectively, with a performance degradation of less than 1%.
UR - http://www.scopus.com/inward/record.url?scp=80052737701&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80052737701&partnerID=8YFLogxK
U2 - 10.1109/ISLPED.2011.5993644
DO - 10.1109/ISLPED.2011.5993644
M3 - Conference contribution
AN - SCOPUS:80052737701
SN - 9781612846590
T3 - Proceedings of the International Symposium on Low Power Electronics and Design
SP - 247
EP - 252
BT - IEEE/ACM International Symposium on Low Power Electronics and Design, ISLPED 2011
T2 - 17th IEEE/ACM International Symposium on Low Power Electronics and Design, ISLPED 2011
Y2 - 1 August 2011 through 3 August 2011
ER -