Improving Short-Term QPF Using Geostationary Satellite All-Sky Infrared Radiances: Real-Time Ensemble Data Assimilation and Forecast during the PRECIP 2020 and 2021 Experiments

Yunji Zhang, Xingchao Chen, Michael M. Bell

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

The Prediction of Rainfall Extremes Campaign In the Pacific (PRECIP) aims to improve our understanding of extreme rainfall processes in the East Asian summer monsoon. A convection-permitting ensemble-based data assimilation and forecast system (the PSU WRF-EnKF system) was run in real time in the summers of 2020–21 in advance of the 2022 field campaign, assimilating all-sky infrared (IR) radiances from the geostationary Himawari-8 and GOES-16 satellites, and provid-ing 48-h ensemble forecasts every day for weather briefings and discussions. This is the first time that all-sky IR data assimilation has been performed in a real-time forecast system at a convection-permitting resolution for several seasons. Compared with retrospective forecasts that exclude all-sky IR radiances, rainfall predictions are statistically significantly improved out to at least 4–6 h for the real-time forecasts, which is comparable to the time scale of improvements gained from assimilating observations from the dense ground-based Doppler weather radars. The assimilation of all-sky IR radiances also reduced the forecast errors of large-scale environments and helped to maintain a more reasonable ensemble spread compared with the counterpart experiments that did not assimilate all-sky IR radiances. The results indicate strong potential for improving routine short-term quantitative precipitation forecasts using these high-spatiotemporal-resolution satellite observations in the future.

Original languageEnglish (US)
Pages (from-to)591-609
Number of pages19
JournalWeather and Forecasting
Volume38
Issue number4
DOIs
StatePublished - Apr 2023

All Science Journal Classification (ASJC) codes

  • Atmospheric Science

Cite this