Improving strand pairing prediction through exploring folding cooperativity

Jieun Jeong, Piotr Berman, Teresa M. Przytycka

    Research output: Contribution to journalArticlepeer-review

    10 Scopus citations

    Abstract

    The topology of β-sheets is defined by the pattern of hydrogen-bonded strand pairing. Therefore, predicting hydrogen-bonded strand partners is a fundamental step toward predicting β-sheet topology. At the same time, finding the correct partners is very difficult due to long-range Interactions involved in strand pairing. Additionally, patterns of amino acids observed in β-sheet formations are very general, and therefore, difficult to use for computational recognition of specific contacts between strands. In this work, we report a new strand pairing algorithm. To address the aforementioned difficulties, our algorithm attempts to mimic elements of the folding process. Namely, in addition to ensuring that the predicted hydrogen-bonded strand pairs satisfy basic global consistency constraints, it takes into account hypothetical folding pathways. Consistently with this view, introducing hydrogen bonds between a pair of strands changes the probabilities of forming hydrogen bonds between other pairs of strand. We demonstrate that this approach provides an improvement over previously proposed algorithms. We also compare the performance of this method to that of a global optimization algorithm that poses the problem as integer linear programming optimization problem and solves it using ILOG CPLEX package.

    Original languageEnglish (US)
    Article number4599567
    Pages (from-to)484-491
    Number of pages8
    JournalIEEE/ACM Transactions on Computational Biology and Bioinformatics
    Volume5
    Issue number4
    DOIs
    StatePublished - Oct 2008

    All Science Journal Classification (ASJC) codes

    • Biotechnology
    • Genetics
    • Applied Mathematics

    Fingerprint

    Dive into the research topics of 'Improving strand pairing prediction through exploring folding cooperativity'. Together they form a unique fingerprint.

    Cite this