Improving the performance of a PEMFC by means of achieving uniform flow distribution

Bladimir Ramos Alvarado, Abel Hernandez-Guerrero, Francisco Elizalde-Blancas, Cuauhtemoc Rubio-Arana

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

A performance analysis of a proton exchange membrane fuel cell is reported in this work. Two different flow patterns are modeled as gas distributors and current collectors of a PEM fuel cell. Both flow patterns have the same active area with similar channel distribution over the membrane electrode assembly. Three dimensional models are used in order to simulate the performance of the fuel cells. The Navier-Stokes equations as well as potential fields (potentiostatic and galvanostatic) are solved using computational fluid dynamics techniques. Two dimensionless parameters were computed to quantify and compare the uniformity of the flow over the reaction area. The present analysis shows that achieving a good flow distribution is a key parameter in the PEMFC performance. The reduction of the concentration losses is the main result when a parallel channel configuration operates with uniform reactants distribution. In this study is demonstrated that the conventional parallel channels flow pattern does not achieve similar flow conditions in each sub-stream and therefore, irregular energy generation is obtained.

Original languageEnglish (US)
Title of host publicationASME 2010 International Mechanical Engineering Congress and Exposition, IMECE 2010
Pages883-891
Number of pages9
EditionPARTS A AND B
DOIs
StatePublished - 2010
EventASME 2010 International Mechanical Engineering Congress and Exposition, IMECE 2010 - Vancouver, BC, Canada
Duration: Nov 12 2010Nov 18 2010

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
NumberPARTS A AND B
Volume5

Other

OtherASME 2010 International Mechanical Engineering Congress and Exposition, IMECE 2010
Country/TerritoryCanada
CityVancouver, BC
Period11/12/1011/18/10

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering

Cite this