Abstract
This work compares various existing rough-wall models on a large collection of rough surfaces with different characteristics and studies the potential of these models in accommodating new datasets. We consider three empirical roughness correlations, two physics-based models, and one data-driven machine-learning model on 68 rough surfaces inside and outside the Roughness Database1. Results show that correlation-Type models and machine-learning models do not extrapolate outside the dataset against which they are calibrated or trained. In contrast, the physics-based sheltering model performs well in extrapolation. Recalibrating a roughness correlation against a large dataset proves unfruitful. However, retraining a machine learning model yields good results. We do not pursue further retraining and recalibrating of a physics-based model, as it requires new physical insights. Overall, our findings suggest that a universal rough-wall model is yet to be found. The capability of extrapolation will likely come from incorporating physics. Data, on the other hand, benefits machine learning models.
Original language | English (US) |
---|---|
Article number | 101302 |
Journal | Journal of Fluids Engineering |
Volume | 145 |
Issue number | 10 |
DOIs | |
State | Published - Oct 1 2023 |
All Science Journal Classification (ASJC) codes
- Mechanical Engineering