Abstract
In this study we isolated and performed in silico analysis of a putative coclaurine N-methyltransferase (CNMT) from the basal angiosperm Aristolochia fimbriata. The Aristolochiaceae plant family produces alkaloids similar to the Papavaraceae family, and CNMTs are central enzymes in biosynthesis pathways producing compounds of ethnopharmacological interest. We used bioinformatics and computational tools to predict a three-dimensional homology model and to investigate the putative function of the protein and its mechanism for methylation. The putative CNMT is a unique (S)-adenosyl-L-methionine (SAM)-dependent N-methyltransferase, catalyzing transfer of a methyl group from SAM to the amino group of coclaurine. The model revealed a mixed α/β structure comprising seven twisted β-strands surrounded by twelve α-helices. Sequence comparisons and the model indicate an N-terminal catalytic Core domain and a C-terminal domain, of which the latter forms a pocket for coclaurine. An additional binding pocket for SAM is connected to the coclaurine binding pocket by a small opening. CNMT activity is proposed to follow an SN2-type mechanism as observed for a similarly conformed enzyme. Residues predicted for the methyl transfer reaction are Tyr79 and Glu96, which are conserved in the sequence from A. fimbriata and in homologous N-methyltransferases. The isolated CNMT is the first to be investigated from any basal angiosperm.
Original language | English (US) |
---|---|
Article number | 107201 |
Journal | Computational Biology and Chemistry |
Volume | 85 |
DOIs | |
State | Published - Apr 2020 |
All Science Journal Classification (ASJC) codes
- Structural Biology
- Biochemistry
- Organic Chemistry
- Computational Mathematics