TY - JOUR
T1 - In situ growth of deep-sea octocorals after the Deepwater Horizon oil spill
AU - Girard, Fanny
AU - Cruz, Rafaelina
AU - Glickman, Orli
AU - Harpster, Tyler
AU - Fisher, Charles R.
N1 - Funding Information:
We would like to thank the crews of the ships and deep submergence facilities involved in this study as data collection would not have been possible without their expertise. We also thank S. Vohsen, C. Du Preez, R. Dannenberg, J. Mentch, M. Kurmann, D. McKean, S. Berlet, S. Smith, A. Weinheimer, C. Bashaw, A. Yang, K. Anderson, and M. McGuigan for their assistance at sea and in the lab. We are particularly grateful to T. Boyer, T. McElroy, L. Bullock, G. DiNicola and T. Albertson for their invaluable help with growth measurements. This research was made possible by a grant from the Gulf of Mexico Research Initiative. Data, including all photographs of all individual corals from all sites, are publicly available through the Gulf of Mexico Research Initiative Information and Data Cooperative (GRIIDC) at https://data.gulfresearchinitiative.org (doi: <10.7266/N78913TC>, <10.7266/ N7HQ3WVD>, <10.7266/N7D21VJQ>, <10.7266/ N74J0C2M>, <10.7266/N7CF9NH9>). This is contribution no. 520 from the Ecosystem Impacts of Oil and Gas Inputs to the Gulf (ECOGIG) consortium. This study was funded by a grant from the Gulf of Mexico Research Initiative awarded to the Ecosystem Impacts of Oil and Gas Inputs to the Gulf (ECOGIG) consortium. Some of the data collected in 2011 were funded by NOAA and BP as part of the Deepwater Horizon oil spill Natural Resource Damage Assessment (NRDA). The funding sources had no role in data collection, the preparation of the manuscript or decision to publish.
Publisher Copyright:
© 2019 The Author(s).
PY - 2019/2/28
Y1 - 2019/2/28
N2 - Although the role of deep-sea corals in supporting biodiversity is well accepted, their ability to recover from anthropogenic impacts is still poorly understood. An important component of recovery is the capacity of corals to grow back after damage. Here we used data collected as part of an image-based long-term monitoring program that started in the aftermath of the Deepwater Horizon oil spill to develop a non-destructive method to measure in situ growth rates of Paramuricea spp. corals and characterize the impact of the spill on growth. About 200 individual coral colonies were imaged every year between 2011 and 2017 at five sites (three that were impacted by the spill and two that were not). Images were then used to test different methods for measuring growth. The most effective method was employed to estimate baseline growth rates, characterize growth patterns, estimate the age of every colony, and determine the effects of impact and coral size on growth. Overall growth rates were variable but low, with average annual growth rates per site ranging from 0.14 to 2.5 cm/year/colony. Based on coral size and growth rates, some colonies are estimated to be over two thousand years old. While coral size did not have an influence on growth, the initial level of total impact in 2011 had a significant positive effect on the proportion of new growth after 2014. However, growth was not sufficient to compensate for branch loss at one of the impacted sites where corals are expected to take an average of 50 years to grow back to their original size. The non-destructive method we developed could be used to estimate the in situ growth rates on any planar octocoral, and would be particularly useful to follow the recovery of corals after impact or assess the effectiveness of Marine Protected Areas.
AB - Although the role of deep-sea corals in supporting biodiversity is well accepted, their ability to recover from anthropogenic impacts is still poorly understood. An important component of recovery is the capacity of corals to grow back after damage. Here we used data collected as part of an image-based long-term monitoring program that started in the aftermath of the Deepwater Horizon oil spill to develop a non-destructive method to measure in situ growth rates of Paramuricea spp. corals and characterize the impact of the spill on growth. About 200 individual coral colonies were imaged every year between 2011 and 2017 at five sites (three that were impacted by the spill and two that were not). Images were then used to test different methods for measuring growth. The most effective method was employed to estimate baseline growth rates, characterize growth patterns, estimate the age of every colony, and determine the effects of impact and coral size on growth. Overall growth rates were variable but low, with average annual growth rates per site ranging from 0.14 to 2.5 cm/year/colony. Based on coral size and growth rates, some colonies are estimated to be over two thousand years old. While coral size did not have an influence on growth, the initial level of total impact in 2011 had a significant positive effect on the proportion of new growth after 2014. However, growth was not sufficient to compensate for branch loss at one of the impacted sites where corals are expected to take an average of 50 years to grow back to their original size. The non-destructive method we developed could be used to estimate the in situ growth rates on any planar octocoral, and would be particularly useful to follow the recovery of corals after impact or assess the effectiveness of Marine Protected Areas.
UR - http://www.scopus.com/inward/record.url?scp=85070564950&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85070564950&partnerID=8YFLogxK
U2 - 10.1525/elementa.349
DO - 10.1525/elementa.349
M3 - Article
AN - SCOPUS:85070564950
SN - 2325-1026
VL - 7
JO - Elementa
JF - Elementa
IS - 1
M1 - 12
ER -